Open File Envelope No. 8803

VARIOUS PETROLEUM EXPLORATION TENEMENTS SOUTH AUSTRALIA AND QUEENSLAND

DELHI-SANTOS REGIONAL SOURCE ROCK STUDIES REPORTS AND DATA

Submitted by

Delhi Petroleum Pty Ltd and Santos Ltd 1990

© 25/9/94

This report was supplied as part of the requirement to hold a mineral or petroleum exploration tenement in the State of South Australia. PIRSA accepts no responsibility for statements made, or conclusions drawn, in the report or for the quality of text or drawings. This report is subject to copyright. Apart from fair dealing for the purposes of study, research, criticism or review as permitted under the Copyright Act, no part may be reproduced without written permission of the Chief Executive of Primary Industries and Resources South Australia, GPO Box 1671, Adelaide, SA 5001.

Enquiries: Customer Services Ground Floor

101 Grenfell Street, Adelaide 5000

Telephone: (08) 8463 3000 Facsimile: (08) 8204 1880

039873

AVAILABLE IN PELS 5 & 6 AND

ATP 259P

Dean C. Johnstone Regional Studies Group April 1985. MG/111/9

CONTENTS

ABSTRACT	1
INTRODUCTION	. 2
DISTRIBUTION OF DATA POINTS	3
SAMPLING	4
RESULTS	5
REPRESENTATION OF RAW DATA	7
MAPPING OF TOC AND HYDROCARBON YIELD VALUES.	8
HYDROCARBON YIELD VERSUS TOTAL ORGANIC CARBON CONTENT	10
SOURCE ROCK QUALITY MAPS	12
CONCLUSION	13
	14

APPENDICES

APPENDIX A - Analytical results

APPENDIX B - Technique for reassigning sample values

APPENDIX C - Subdivided analytical results

APPENDIX D - Technique for averaging analytical data

APPENDIX E - TOC vs hydrocarbon yield crossplots

APPENDIX F - Averaged TOC vs hydrocarbon yield crossplots

APPENDIX G - Area tables

APPENDIX H - Well key for maps

ENCLOSURES:

- I. Percentage of formation sampled for liquid chromatography
- II. Depth intervals sampled for liquid chromatography
- III. TOC and hydrocarbon yield maps
- IV. Geochemical cross-section
- Y. Source Rock quality maps

ABSTRACT

This report synthesises all existing data relating to liquid chromatography, providing a basis for further source rock work to be carried out on a formation by formation basis. Various suggestions are made on how to handle the existing data so that a more detailed interpretation can be made.

Preliminary interpretations of basic geochemical parameters (Total Organic Carbon and Hydrocarbon Yield) are presented with the view that at this stage, all results are to be regarded in a broadly regional sense. It is not intended that such results be applied on a field scale.

Due to the sampling methods employed, data were difficult to adequately represent in map form etc. To overcome this, cuttoffs were applied with respect to which samples were used, thus reducing the number of usable data points.

From this study it is apparent that potential source rock quality is reduced toward the basin margins and over major structural high trends reflecting regional facies variations. Areas of higher quality generally parrallel areas where shaly facies dominate.

The data suggests that the best quality potential source rocks within the Eromanga Basin occur within the basal Jurassic (Poolowanna Formation) and Birkhead Formations. The Westbourne Formation and, to a lesser degree, the Murta Member, are secondary in quality.

As a result of this, areas to the north of the Jackson-Naccowlah Trend are shown to contain potential source rocks of sufficient quantity and quality to generate significant volumes of liquid hydrocarbons at the present level of maturity. These areas in the past have tended to be downgraded.

INTRODUCTION

Samples taken from 91 wells within PELS 5 & 6 and ATP 259P have been subjected to analysis using liquid chromatography. The results of these analyses are presented in Appendix A.

Prior to 1984, the quality of organic matter was investigated mainly via liquid chromatography. Due to the cost of analysis by this method, wide spread usage of liquid chromatography gave way to Rock-Eval pyrolysis. This was done to provide a relatively inexpensive screening service that could be followed up with liquid chromatography analysis on samples of interest. Little further liquid chromatography work has been undertaken under this system.

This report is a collation of all existing liquid chromatographic data and provides a working base for the Exploration Teams and the Regional Studies Group. In previous source rock reports, data were compiled for individual wells to give evaluation through a vertical section. Data presented in this report have been arranged on a formation by formation basis for selected horizons, to enable regional evaluation of geochemical trends.

Suggestions on techniques and methods of interpreting the data are offered along with an interpretation of basic parameters for selected source rock horizons (total organic carbon and hydrocarbon yield). Special note has been given to the limitations which need to be considered when using the data.

DISTRIBUTION OF DATA POINTS:

Distribution of data points is variable, both in areal and vertical extent. Enclosures I & II show the intervals which have been analysed, expressed as a percentage of the formation sampled and the depth interval sampled respectively.

From these charts it becomes apparent that sampling has been concentrated within the Cretaceous to Triassic interval with very few readings taken from the Permian section. Where the Permian has been sampled, it is generally confined to the Toolachee and Patchawarra Formations due to the removal of the late Early Permian section by erosion.

Maps showing the spatial distribution of wells which had samples >75% within the formation of interest are presented in Enclosure III for the four main Mesozoic source horizons. Sample collection generally has a very low density about producing fields. The Murta Member shows a higher density of data points in the Dullingari-Strzelecki region, along the Jackson-Naccowlah Trend and in the Patchawarra Trough area (adjacent to Merrimelia). Areas of lesser density include northern Queensland and within the Total 1966 Block.

Sampling of the Birkhead Formation has been more intense along the Jackson-Naccowlah Trend, in the Dullingari-Strzelecki region and throughout northern Queensland. The Patchawarra Trough and the Total 1966 Block have also been sampled but with a lower intensity.

The Westbourne Formation has mainly been sampled in the Patchawarra Trough and in the area north of the Jackson-Wackett Trend. Sampling to a lesser degree has been carried out in the southeastern Queensland-South Australia corner of the licence area. Sample distributiuon for the Westbourne Formation is similar to that of the Murta Member except for the presence of a greater number of data points in northern Queensland and Total 1966 Block.

The 'basal Hutton' Member and the laterally equivalent Poolowanna Formation are virtually not represented by samples south of the Jackson-Naccowlah Trend. Distribution is confined mainly to the northern Queensland and Pedirka areas.

Sampling of the Patchawarra Formation is confined to the major structural trends within the Cooper Basin. The Jackson-Karmona trend and the Nappacoongee-Murteree area show the greatest density of data points, with representation to a lesser degree in the Patchawarra Trough and southeastern Queensland.

Generally, more intense sampling has been carried out in the Nappacoongee-Dullingari, Jackson-Naccowlah and northern Queensland areas.

SAMPLING

Analysis in the past was carried out on either ditch cuttings, side wall core or full hole core samples. The ditch cuttings were composite samples generally representing 300' of section. Although these composite samples were not to cross formation boundaries (as picked in the field), difficulties in picking tops in the field and the revision of such tops usually resulted in samples straddling formation boundaries to some degree.

Where superadjacent formations are facies related this fact may not be important. However, where formations are separated by an unconformity it becomes important to know which formation is best represented by the sample.

To overcome this problem, it became neccessary to either reassign the analytical value for samples straddling formation boundaries or to apply a cutoff.

The first method employed was a technique for assigning values to that portion of the sample which lay entirely within one formation. This technique is outlined in appendix B and involves the solution of two simultaneous equations which relate the average value in each formation to the amount of sample contained above and below the formation boundary.

This method produces reasonably reliable results. However the technique relies on there being at least one sample above and below the sample in question, which is truly representative of the formation containing it (i.e. 100% within that formation). In many of the wells investigated, numerous consecutive samples would straddle formation boundaries (because of the 300' composite interval) thus making this technique unusable.

As a result cutoffs were applied instead. Subdivision was made on the basis of samples which where 100% within the formation, 99-75% within the formation and less than 75% within the formation. Samples which were between 100% & 75% were considered to be a fair representation of the formation being analysed.

Enclosure 1 shows the percentage of each formation sampled for liquid chromatography analysis with the wells being displayed in chronological order. Notice that the style of sampling has changed with time. Core and sidewall core samples dominate early wells due to the fact that such wells were not originally sampled for such work. 1984 work shows the use of 30'-50' composite samples. Though this close spacing increases the usefulness of such samples, continuity of sampling due to cost, suffers as a result.

RESULTS

Appendix A contains a summary of the analytical data compiled for each well. Subdivision of these samples has been made according to the procedure discussed in the previous section, for the four main Mesozoic source horizons and the Patchawarra Formation and are contained in Appendix C.

From the analytical data, a hydrocarbon yield has been calculated (where able) for each sample according to the relation:

Hydrocarbon Yield
$$(mg/g TOC) =$$

$$\frac{(A + S)}{100}$$
 x (EOM as a fraction of TOC)

where: A = wt % of aromatics

S = wt % of saturates

EOM as a fraction of TOC =
$$\frac{\text{weight of EOM (g)}}{\text{sample weight(g)}} \times (\frac{\text{TOC (wt%)}}{100})$$

The total amount of hydrocarbon present in the sample was also calculated using:

Total Hydrocarbon Content (ppm)= HC yield (mg/g TOC) x TOC (wt%) x 10

Of the parameters presented in appendix C, Total Organic Carbon (TOC) content and hydrocarbon yield were considered to be the best to use in order to investigate the source potential of each formation.

TOC is a measure of the amount of organic matter present in a sample and can be used as an indicator of source rock potential at maturity. The amount of organic matter present in a rock is determined by crushing the rock, acid leaching to remove all carbonate carbon and measuring the remaining carbon content. This residual carbon is termed total organic carbon (TOC).

Dickey and Hunt (1972) maintain that a minimum TOC content of 0.5% is neccessary before a clastic rock can be considered to have hydrocarbon potential. The following scale can be applied to clastic rocks to estimate source rock potential at maturity (Moore, 1982)

TOC (wt%)	Source Potential at Maturity
less than 0.5% 0.5% - 1.0%	negligible very poor
.0% - 1.3%	poor
1.3% - 1.7% 1.7% - 2.0%	moderate good
2.0% - 4.0% greater than 4.0%	very good excellent

The major weakness of this technique is the fact that it fails to consider the type of organic matter present. The amount of hydrocarbon that a kerogen is able to generate is strongly influenced by the type of kerogen in the source rock. Thus, inertinite-rich rocks are considered to yield very little hydrocarbons when mature. In addition the hydrocarbons will tend to be gaseous, regardless of maturity.

To allow for variations in organic type, the hydrocarbon yield of a source rock should be taken into account. The hydrocarbon yield at a particular level of maturity is a measure of the quality of the organic matter contained. The following scale can be applied to clastic rocks to reflect the quality of the organic matter contained.

Hydrocarbon Yield (mg/g TOC)	Quality of a source rock
less than 5	gas source or immature
5 – 10	gas and some oil
10-25	fair oil
25-50	good oil
50-250	very good oil
greater than 250	stained

During maturation, the hydrocarbon yield will increase and as a result, is a function of both organic type and the level of maturity. However it is independant of the total organic carbon content. Hydrogen-rich organic matter (Type I and II kerogens) will yield greater amounts of hydrocarbons than material with a low hydrogen to carbon ratio (Type III and IV kerogens). Low yielding organic material will therefore have a lower ability to expel hydrocarbons due to the fact that the absorbtive capacity of the organic matrix must be overcome before hydrocarbons become available for migration. Hence in order to investigate the source potential of a rock, equal emphasis must be placed upon TOC and hydrocarbon yield (Vincent, 1983). This can be represented diagramatically by a cross plot of TOC against hydrocarbon yield which indicates the amount and type of hydrocarbons generated by a rock at its existing level of maturity.

REPRESENTATION OF RAW DATA

Geochemical trends were attempted to be investigated by mapping TOC and Hydrocarbon Yield values. In order to represent such parameters on a map, values measured from samples taken over the interval of interest required averaging.

If sampling is continuous throughout the interval, weighted averages may be obtained by considering the thickness of each sample. The method for doing this is outlined in Appendix D and the results it yields are quite acceptable. However, many wells were sampled via sidewall or full hole cores, thus were not sampled continuously through the interval of interest. In these cases, the above method of averaging could not be employed. In fact, most wells with continuous samples proved to have samples straddling the formation boundaries. Because pure samples were not available above and below the boundary, the method of averaging could not be applied.

As an alternative, a straight numerical average was applied to each interval which only included those samples which were >75% within the formation. This resulted in averages being biased by marginally extreme values. Hence, the average may not be a true representation of the formation. In addition, barren sandstone can dilute thin beds rich in organic matter (carbonaceous shales and siltstones) thus giving low sample values of TOC and hydrocarbon yield. Conversely, coal rich layers will boost the organic richness of a sample (Vincent et al., 1985). The result in both cases, is to give a value which is a poor representation of the actual potential source rock.

Table 1 contains averages of TOC and hydrocarbon yield values for the four main Eromanga Basin source horizons.

TABLE 1: FORMATION AVERAGES OF TOC AND HYDROCARBON YIELD (ONLY SAMPLES \$75% MITHIN THE INTERVAL OF INTEREST HAVE BEEN INCLUDED).

1.68	Well	TOC Murta to Basal Jr.	TOC Murta	HC yield Murta	TOC Westbourne	HC Westbourne	TOC Birkhead	HC Birkhead	TOC B. Jr & Poolowanna	HC 8. Jr. & Poolowenna
Althrea 1 0,24-4,00 (10) 0,69 15.1 0.4 12.4 4.00 12.4 4.0 0,66-1,14 (2) 6-7-185 12.40 12.4	Adria Downs 1		-	-	-	-	-		1.75	12.7
1.51	Alkina 1	0.24-4.00 (10)	0.89	18.1	0.41	12.4	4.00	24.9	0.66-1.14 (2)	6.7-18-5 (
See 1	Barrolka E 1		-	-	0.48	24.8	2.70	19.1	4.28	3.7 .
Description Commission Co	Beambush 1	•	•	-	-	•		-	-	•
Contended	Belah 1		0.75	15.6	•	-	2.00	24.5	-	-
Chandos 1 16.30	Boorthana 1	•		-	-		-	-	•	•
Contends \$ 1	Cannuwaukaninna	a 1 -	-	-	•	_	-		-	
Colsen 1 0.02-13 (6) 5.59	Chandos 1	16.30	-	-		•	16.30	6.0	•	•
Connectic 2	Chandos S 1	-	•	-	-	•	-	-	-	-
Contension 1	Colson 1		•	-	-	-	-	-	31.6	13.0
Cortamorfina 1	Coonatie 2		0.49	28.7	0.29	37.4	•		•	
Corkwood 1	Cootanoorina 1		•		•	•		-	-	-
Cumbroo 0.54-25.30 30 5.66 3 5.66 5.9-37.3 21 5.9-37.3 22		0.40-1.55 (4)	•	-	-	-	•	-		٠.
Curvaline		0.54-25.30 (3)	-	-	-	-			2)	
Autaprirrie 1 0.58-1.24 (3) 0.88	Curalle 1		0.89	11.9	0.72	11.0	1.42	44.9	1.34-4.35 (2) 2.85	
Li.32	uttapirrie 1	0.58-1.24 (3)	0.82	•		•	1.24	57.7		
Petia 1 0.98-6.40 (2) 3.69	Daralingie 4	0.95-1.60 (3)	•	_	-			_		,
Notice 1	Della 1		_		_	_	n ge	134.0	_	
	11chee 1	0.30-0.85 (3)	0.85	9.3	_				_	
	ullingari l				-			-	· -	-
0.70 0.70 18.00										
M7 11		0.70	0.70	18.00	-	-	-	•	-	•
1.41 2.53 14.4 0.47 32.0 0.80 42.33	M7 11			27.15		-	•	-	-	-
Trabens 1 0.10-12.50 (10) 1.94 1.00-12.50 (3) 4.5-11.8 (3) 1.94	Wllingari N 1					32.0			3)	-
1.94 5.48 9.13 Fly Lake 4 0.50-1.30 (7) 0.60-0.95 (4) 34.5-53.7 (4) 5.48 9.13 Fly Lake 4 0.50-1.30 (7) 0.60-0.95 (4) 34.5-53.7 (4)	Durham Downs 1	-	•	-	-	•	•	-	•	-
0.79 0.74 42.6	rabena 1		• -	-	-		-	-		
ill peppee 2 0.45-3.55 {9} 1.71 0.90 33.4 3.55 27.5 2.15 12.9 lume 1 0.75-3.75 {6} 0.80 9.5 0.75 13.7 3.75 10.8 ingella 1 0.15-4.40 {10} - 0.45-0.50 {2} 13.5-25.2 {2} 0.48 19.35 4.40 24.3 0.60 16.2 innamincka 3 0.86-9.64 {4} 3.30 0.86 49.0 9.64 3.0 include 1 0.05-0.47 {6} 0.19 - 0.12 37.0 0.47 6.6 ackson 1 0.35-2.90 {12} 0.85-1.95 {3} 6.0-49.0 {3} 1.40-2.90 {2} 41.7-73.5 {2}	Ty Lake 4					_	-	-	-	-
1.71 0.90 33.4 3.55 27.5 2.15 12.9	idgealpa 2	•	•	•	-	-	-	-	-	-
1.41 0.80 9.5 0.75 13.7 3.75 10.8 ngella 1 0.15-4.40 (10) - 0.45-0.50 (2) 13.5-25.2 (2) 0.48 19.35 4.40 24.3 0.60 16.2 nnamincka 3 0.86-9.64 (4) 3.30 0.86 49.0 9.64 3.0 ack Lake 1 0.05-0.47 (6) 0.19 0.12 37.0 0.47 6.6 ackson 1 0.35-2.90 (12) 0.85-1.95 (3) 6.0-49.0 (3) 1.40-2.90 (2) 41.7-73.5 (2)	illpeppee 2		-	-	0.90	33.4	3.55	27.5	2.15	12.9
Ingella 1 0.15-4.40 (10) 0.45-0.50 (2) 13.5-25.2 (2) 1.13 - 0.48 19.35 4.40 24.3 0.60 16.2 Innamincka 3 0.86-9.64 (4) 3.30 0.86 49.0 9.64 3.0 Iack Lake 1 0.05-0.47 (6) 0.19 - 0.12 37.0 0.47 6.6 Iackson 1 0.35-2.90 (12) 0.85-1.95 (3) 6.0-49.0 (3) 1.40-2.90 (2) 41.7-73.5 (2)	tume 1		0.80	9.5	0.75	13.7	3.75	10.8	-	-
nnamincka 3	ngella 1				0.45-0.50 (2)	13.5-25.2 (2)			0.60	
ack Lake 1 0.05-0.47 (6) 0.19 0.12 37.0 0.47 6.6 ackson 1 0.35-2.90 (12) 0.85-1.95 (3) 6.0-49.0 (3) 1.40-2.90 (2) 41.7-73.5 (2)	nnamincka 3	0.86-9.64 (4)	0.86	49.0						
ackson 1 0.35-2.90 (12) 0.85-1.95 (3) 6.0-49.0 (3) 1.40-2.90 (2) 41.7-73.5 (2)	ack Lake 1	0.05-0.47 (6)								
0.98 1.28 21.67 2.15 57.60 0.55 81.8	ackson 1		0.85-1.95 (3)	6.0-49.0 (3)	1.40-2.90 (2)	41.7-73.5 (2)				

TABLE 1: FORMATION AVERAGES OF TOC AND HYDROCARBON YIELD (ONLY SAMPLES >75% WITHIN THE INTERVAL OF INTEREST HAVE BEEN INCLUDED). (Continued)

Well	TOC Murta to Basal Jr.	TOC Murta	HC yield Murta	TOC Westbourne	HC Westbourne	TOC Birkhead	HC Birkhead	TOC 8. Jr & Poolowanna	MC B. Jr. & Poolowanna
lackson 2	1.55	-	+	•	-	<u>.</u> .	•	-	•
lackson S 1	0.72-4.40 (6) 1.57	0.78	32.6	0.76	42.7	-	-	-	-
Carmona 1	-	-	-	-	•	-	-	-	
Carmona E 1	0.41-2.62 (7) 0.90	0.63	66.0	0.53	23.5	2.62	32.5	-	•
(idman 2	0.76-2.08 (8) 1.25	0.88	58.0	0.77-0.91 (2) 0.84	22.0-43.0 (2) 32.5	0.76-1.72 (2) 1.24	39.0-80.0 (2) 59.5	-	-
(uncherinna 1	0.05-6.75 (17) 1.10	-	•	-	-	-	•	0.70-2.90 (7) 1.34	4.7-20.4 (7) 12.06
lacumba 1	-		-	•	•	-	•	-	-
Marabooka 1	0.05~3.20 (5) 1.69	0.65-2.65 (3) 1.73	28.0-38.0 (3) 32.33	•	-	<0.05	59.0	-	-
tcKinlay 1	0.75-3.50 (5) 1.70	-	-	-	-	-	-	-	-
Merrimelia 6	0.50-2.60 (6) 1.06	0.80	49.7	-	-	-	-	8.25	0.7
Merrimelia 7	0.35-11.70 (8) 2.36	0.90	8.0	0.80	2.5	1.20	17.7	11.70	11.5
Mokari 1	0.14-1.17 (3) 0.75	-	_	_	•	-	-	0.15-1.17 (3) 0.75	13.0-28.0 (2 20.5
toomba 18	0.62-1.01 (3) 0.82	0.62-1.01 (2) 0.82	15.0-19.0 (2) 17.0	-	-	-	-	-	-
Moorari 3	0.25-2.10 (1) 1.00	0.90-0.90 (3) 0.68	12.3-23.9 (3) 18.0	0.40-1.60 (3)	22.4-81.5 (3) 45.9	0.65-2.10 (3) 1.18	61.8-461.2 (3) 201.4	-	
forney 1	1.00-3.10 (7) 1.59	-	-		-	-	-	1.85	17.5
Mt. Howitt 1	0.39-1.60 (2) 1.00	•		0.39	14.0	1.60	30.0	-	-
Mudera 1	0.65-1.80 (6) 0.88	0.70	26.0	-	-	0.75-0.75 (2) 0.75	21.8-36.9 (2) 29.35	-	-
Mudlalee 2	1.42-2.79 (3)	-	-	-	-	1.42	84.0	-	-
Munkari 1	1.66-3.04 (2) 2.35	-	_	-	-	-	-	-	•
Naccowiah 1	0.70-6.71 (8) 1.94	0.85-6.71 (2) 3.78	27.1-172.9 (2) 100.0		-	0.70-2.19 (3) 1.31	19.1-40.8 (3) 30.97	0.78-1.46 (2) 1.12	25.2-42.7 (33.95
Namur 2	1.52-4.68 (6) 3.08	1.52-4.68 (6) 3.08	34.0-31.0 (6) 49.33	-	•	-	-	-	-
Nappacoongee 2	0.64-15.40 (3° 5.87	0.64-1.58 (2) 1.11	29.0-76.0 (2) 52.5	-	-	15.40	36.0	-	•
Oodnadatta 1	•	•	-	-	•		•	-	-
Oodnadatta TB	-	•	-	-	-	•	•	•	•
Orientos 1	0.26-1.76 (3) 0.78	•	-	-	-	0.31	24.0	-	-
Packsaddle 3	•	-	-	•	-	-	•	1.78-4.27 (4)	2 0-10 0 (A)
Pando 1	1.78-4.27 (4) 3.00	-		•	-	-	•	3.00	5.75
Patchawarra B	•	-	-	-	-	-	-	-	-
Pinna 1	0.12-1.16 (3) 0.71	1.16	27.01	-	-	-	-	-	-
Poolewanna 1	1.22-13.15 (1		-	-	-	-	-	1.22-9.28 (9)	
Purni 1	-	-	-	-	-	•	-	•	•
Spencer 2	0.20-0.95 (4) 0.50	-	-	-	-	-	-	-	-
Strzelecki 3			22.0-48.0 (2)	0.66-0.01 (2)	37 0_42 0 (2)	0.86+7.05 (5)	42.0-95.0 (5)		

Well	TOC	TOC	HC yleld	TOC	нc	TAC		-	
	Murta to Rasal Jr.	Murta	Murta	Westbourne	Westbourne	TOC Birkhead	HC Birkhead	TOC B. Jr & Poolowann	HC B. Jr. a & Poolowenna
Strzelecki 4	0.10-2.60 (12) 1.05	0.60-1.10 (3) 0.80	49.7-201.3 (3 113.63	0.10	117.0	1.10-1.95 (3) 1.40	57.6-84.2 (3) 68.33	_	
Strzelecki 5	0.85-3.70 (4) 1.79	0.85	17.7	-	-	3.70	16.9		-
Tanbar N 1	0.18-5.15 (10) 1.23	0.57	38.0	1.69	11.2	5.15	6.9	0.95-1.57 (2) 1.26	5.5-13.6 (2) 9.55
Tartulla I	0.33-6.85 (1) 1.56	0.68-0.98 (3) 0.86	46.6-54.9 (3) 50.2	0.33-1.20 (3)	11.6-62.8 (3) 36.6	1.10-2.45 (3)	39.73	6.85	5.1
homas 1	0.41-5.30 (7) 1.90	-	-	-	-			0.41-5.30 (6) 2.00	N/A
hunda 1	1.15-10.40 (2) 5.78	-	-	-	-	1.15	14.0	_	-
oodla 1		-	•	=	_	-	-	_	<u>.</u>
ackett I	0.81-5.50 (6) 1.68	0.90-0.97 (2) 0.94	23.1-69.1 (2) 46.1	0.81	32.2	1.01-5.50 (2) 3.26	15.5-70.6 (2) 43.05		, -
alkandi 1	0.05-7.70 (12) 1.09	-	-	-	-	-	-	2.30-7.70 (2) 5.00	10.5-14.3 (2)
antana l	0.40-4.20 (7) 1.54	0.50	20.2	•	-	-	-	-	•
areena 1	0.22-4.68 (7) 1.81	0.22	17.3	1.34	6.0	1.69-4.68 (3) 2.78	16.2-46.5 (3) 34.7	0.86	21.0
eedina 1	-	•	•	-	•	-		-	
elcome Lake 1	0.15-3.35 (7) 1.07	-	-	0.25	28.5	-	-	-	
1715 1	0.80-1.60 (8) 1.04	0.80	4.6	-	-	1.60	12.6	-	_
lpinnie 1	0.08-9.70 (13) 2.35	0.61-1.91 (7) 1.24	10.9-49.0 (7) 31.73	6.97	31.3	1.01-9.70 (2) 5.36	26.7-31.1 (2) 28.9		
mma 1	0.10-1.90 (8) 0.68	-	-	0.35	12.0	0.65-1.90 (2) 1.28	27.2-29.9 (2) 28.55	_	-
nko 1	0.85-1.50 (4) 1.06	-	-	1.00	14.7	-	-	_	_
peni 1	0.10-1.10 (3) 0.75	1.05	25.7		-	1.10	70.0	_	_
ycoe 1	0.72-1.31 (4) 0.90	0.77	22.6	0.72	25.5	0.80-1.31 (2) 1.06	15.3-19.3 (2) 17.3	•	_
hookoo 1	1.03-8.55 (8) 3.59	-	-	1.54	9.2	1.03-3.60 (3)	19.2-80.2 (3) 41.00	3.12-8.55 (3) 6.36	13.3-35.1 (3) 21.63
unna 1	0.95-1.89 (5) 1 1.63	1.87-1.89 (3) 1.88	12.5-46.1 (3) 28.27	•	-	0.95-1.58 (2)		-	-
eccowlah uth I	0.81-4.90 (12) 1.77	0.81	87.6	1.96-2.78 (2)	7.0-11.3 (2) 9.15		14.2-18.2 (3) 16.77	-	-
ichie 1	1.00-2.58 (8) 1	1.00-1.46 (2)	5.0-11.6 (2) 8.30	1.04	22.8		32.0-78.9 (3) 57.67	•	-
impilla 1	0.81-11.80(11) 1 2.42	1.10-1.99 (4) 1.46	7.6-34.4 (4) 19.38	0.81-1.06 (2) 2 0.94	28.5-90.3 (2) 54.4	0.81-2.26 (3)		-	-
lson 1	0.30-8.20 (14) 0	.76-8.20 (4)	3.0-160.3 (4)	0.30-1.13 (3) 3			10.9-61.2 (4)	3.75	3.1

MAPPING OF TOC AND HYDROCARBON YIELD VALUES

Due to the large variaton in spatial distribution and the problems associated with calculating an average value for each formation, mapping of such values is not informative on a detailed, predictive scale. Gross distribution trends only can be inferred.

Distribution maps of TOC and Hydrocarbon Yield for the Murta Member, Westbourne Formation, Birkhead Formation and the basal Jurassic unit are presented in enclosure 111. Since the number of usable data points for each horizon are limited, there is considerable room for artistic licence in the way each map is contoured. Where possible, contouring was based on isopach maps of the unit in question. As previously discussed, map values represent an average of sample values which are contained 75% within the Hence the maps are subject to dubious control by outlying Because organic facies are highly variable in both lateral and wells. vertical extent, the maps probably show an over simplification in that they show a particular value to persist over large expanses. If more data points were available, a higher degree of local variation would become more apparent. Tables 1-4 contained in Appendix H provide a key to the wells used.

As a general result, the distribution of TOC and Hydrocarbon Yield is governed by the distribution of the shalier sedimentary facies. Thus, increases in TOC parallel increases in the percentage of lacustrine shales and coals in the sequence. Hydrocarbon Yield also shows some parallelism. Both parameters show low values over the main structural highs and toward the basin margins. This presumably, is related to the sequence becoming more sandy or oxidized in these areas. As a consequence, the reliability of such maps will be increased by the inclusion of results from sand-shale ratio studies.

Basal Hutton Member and laterally equivalent Poolowanna Formation:

The highest concentrations of TOC occur in the Cooper Sector and show similar distribution trends to the Permian sediments of the Patchawarra and Nappamerri Troughs. The Poolowanna Trough area also shows high TOC values. This is consistant with the distribution of shaly Poolowanna equivalents. Hydrocarbon yield also increases in these areas. These areas of high yield and TOC show a correlation with hydrocarbon discoveries within the unit, at Poolowanna, Moolion and Cuttapirrie. Some anomalously high values of TOC are attributed to the presence of coal in some cuttings samples.

On average, the unit contains potential source rocks of good quality which compare favourably with other source horizons in the Eromanga Basin. TOC values are marginally better than those of the Birkhead Formation and much greater than those of the Murta Member and Westbourne Formation. Yield is similar to that of other horizons.

Birkhead Formation:

The Birkhead Formation shows its best TOC development in northern ATP 259P and in the Nappamerri Trough region where values of greater than 5.0 wt.% are recorded. This coincides with the more coally regions encountered in the formation. Better yielding source rocks are confined to the Cooper Basin area. Poorer development of TOC content and yield is noted along prominant structural high trends.

Westbourne Formation:

The Westbourne Formation generally shows moderate to poor source characteristics throughout its distribution. This is possibly due to the sandier, more oxidized nature of the unit. The best development of TOC and yield occur in the Jackson-Naccowlah area which is the only region to record hydrocarbon discoveries at this level to date. Other areas of high yield include the central Patchawarra Trough and the southern Nappamerri Trough. Again poorer values are encountered on structural high trends. This unit is notably poorer in source characteristics than the other three Mesozoic source horizons.

Murta Member:

Distribution of better quality potential source rocks reflects the distribution of shaly Murta Member with the highest values of yield (greater than 3.0 wt.%) and TOC (50-100 mg/g TOC) being recorded south of the Jackson-Naccowlah Trend and to some extent along the axis of the Windorah Trough. TOC is generally poorer in the more northern, sandy areas and along structural highs.

In contrast to the number of discoveries made in the region, the southern portion of PEL 6 shows relatively low values of TOC and yield. However, discoveries in this area are small which is consistent with low yielding organic matter which is present in low abundance. Generation of hydrocarbons within the unit may have been aided by bacterially-enriched terrigenous organic matter (Vincent et.al., 1985) which helps to explain the presence of oil accumulations in areas where poor potential source rocks are observed (using TOC, hydrocarbon yield and pyrolysis).

Mesozoic Units:

The average of TOC contained in units between the Murta Member and the Poolowanna Formation shows high values in the Poolowanna and Nappamerri Troughs and in northeastern ATP 259P. This reflects the more shaly/coaly regions of the sequence.

The quality and reliability of these maps will be improved at a later stage when data from rock-eval pyrolysis and sand-shale ratio studies are integrated. Among other things, a greater number of TOC data points will become available.

The construction of geochemical cross-sections provides a more accurate representation of the data. Hydrocarbon Yield and Total Organic Carbon values are plotted as a bar graph either side of a gamma ray log trace. This allows the interpreter to see where (stratigraphically and sedimentologically) the sample came from and the type of sample it is. Such sections should be constructed over all available wells for each horizon of interest. An example is included as Enclosure IV.

HYDROCARBON YIELD VERSUS TOTAL ORGANIC CARBON CONTENT.

Cross plots of hydrocarbon yield versus TOC have been constructed for each cut-off level of the four Mesozoic source horizons and the Patchawarra Formation and are included in Appendix E. A summary of these diagrams is presented in figure 1. This diagram shows the dominant cluster of data points for each horizon. Only the diagrams representing the 100% and the 99-75% cut-off were included in this summary.

All five intervals are shown to contain organic matter which is oil prone with low to high TOC content. Thus all are prospective units for the generation of oil. The Birkhead Formation appears to be the most prospective due to higher TOC content while the Westbourne Formation shows TOC content in the negligible to high range and as a result may be less responsible for the generation of large amounts of hydrocarbons across the basin. The basal Jurassic units show a skewness which tends to indicate a greater tendancy to be gas prone or immature in some areas. The Murta Member has a moderate to very good rating in most areas.

The Permian Patchawarra Formation shows a bimodal distribution indicating that the unit has potential to yeild both oil & gas in significant quantities. However no strong correlation is evident between those samples which are oil prone and any particular horizon depth.

Plots of the averaged values in each well for the four Eromanga Basin units (Appendix F) show similar results to those mentioned above with a spread in the size of the data point cluster being evident (due to biasing).

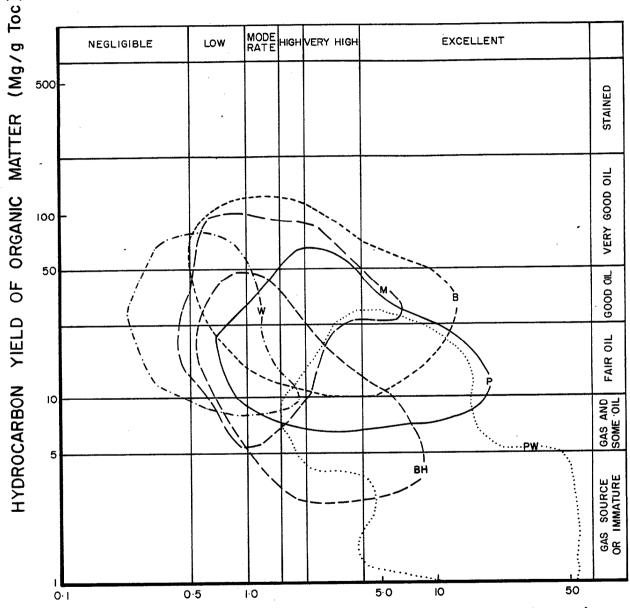
These diagrams enable the interpreter to see if the interval in question is not only capable of yielding liquid hydrocarbons but also if enough organic matter is present to generate significant quantities.

Tables 1-4 contained in Appendix G show wells which fall within the areas defined by cutoff lines paralleling the axes of the interpretive diagram.

These tables represent the data contained in the plots of averaged values. The numbering system used (1A, 1B, etc) is an arbitary system which is explained by figure 2. Crude trends become apparent with wells grouped in certain areas of the diagram, also being spatially related. By considering a trade-off of hydrocarbon yield against TOC content, a rating system of these areas can be devised. By regarding the ability of organic matter to yield liquid hydrocarbons as being more pertinent to the quality of a source rock than the amount of organic carbon it contains, the following (relative) rating system may be applied.

6E>5E>6D>5D>4E>6C>4D>5C>3E>4C>3D>3C>6B>2E>5B>4B>2D>3B>2C>2B>6A>1E>5A=4A=3A=2A=1D=1C=1B=1A>6F=5F=4F=3F=2F=1F

or on a scale of 1 to 24:


```
22 = 1E
1 = 6E
             8 = 5C
                        15 = 5B
                                   23 = 5A, 4A, 3A, 2A, 1D, 1C, 1B, 1A
             9 = 3E
                        16 = 4B
2 = 5E
3 = 6D
             10 = 4C
                        17 = 2D
                                   24 = 6F, 5F, 4F, 3F, 2F, 1F
             11 = 3D
                        18 = 3B
4 = 5D
5 = 4E
             12 = 3C
                        19 = 2C
6 = 6C
             13 = 6B
                        20 = 2B
             14= 2E
                        21 = 6A
7 = 4D
```

Hence, areas corresponding to low rating numbers, represent regions containing potential source rocks capable of yielding significant volumes of liquid hydrocarbons. Wells which plot in various areas are listed in Appendix G and displayed in map form as enclosure V.

PETROLEUM PTY. LTD. DELHI

SOURCE HORIZON QUALITY

AND AMOUNT OF HYDROCARBONS BY A ROCK AT ITS EXISTING LEVEL OF MATURITY **GENERATED**

TOTAL ORGANIC CARBON CONTENT (Wt.%)

M = MURTA MEMBER W: WESTBOURNE

B = BIRKHEAD FM
BH = BASAL HUTTON MEMBER
P = POOLAWANNA FM
PW = PATCHAWARRA FM

***** ONLY SAMPLES≥75% WITHIN A FORMATION HAVE BEEN USED

	Author : D. JOHNSTONE	Date : NOV. 1984	Dwg. No. : 84XG - 44I8	FIG. I
GELH	Drafted : M.SHEAN	Revised :	File No. : RP-I	F 1G. 1

FIGURE 2: Number system used for rating source rock quality.

	NEGLIGIBLE	LOW	MODE RATE	HIGH	V HIGH	EXCELLENT		\dashv
00	1F (24)	2F (24)	3F (24)	4F (24)	5 F (24)	6 F (24)		STATNED
0	1E (22)	2E (14)	3E (9)	4E (5)	5E (2)	6E (1)	<i>:</i>	VG OTT.
0	1D (23)	2D (17)	3D (11)	4D (7)	5D (4)	6D (3)		G OTT.
	1C (23)	2C (19)	3C (12)	,4C (10)	5C (8)	6C (6)		TTO GIVE
.0	1B (23)	2B (20)	3B (18)	4B (16)	5B (15)	6B (13)		GAS AND
5	1A (23)	2 A (23)	3 A (23)	.4A (23)	5 A (23)	6A (21)		GAS SOURCE OR
1	1	0.5	1.0	<u> </u>	<u> </u>	5.0 10	50	Ĺ

SOURCE ROCK QUALITY MAPS

The crossplot of hydrocarbon yield versus TOC can also be represented in map form. By considering the previously mentioned rating system, areas of high to low source rock quality can be identified. Values at the well for each formation represent areas of the crossplot (i.e. 1A,2B,etc) where the values of TOC and hydrocarbon yield fall. (A list of wells which lie in each area is presented in Appendix G). These values are contoured via the rating system where one area can be regarded as being of better quality than an adjacent area at its present level of maturity.

The accuracy of such maps in highly dependant upon the averaged values of TOC and hydrocarbon yield used. In addition, data points are sparse thus reducing the constraints on the way values are contoured. Nevertheless, such a map is useful in high or low grading areas on a <u>regional</u> scale.

Enclosure V contains quality maps for the four main Mesozoic source horizons. Appendix H contains a key to the wells used. Low values represent areas of higher potential source rock quality (i.e. oil prone source rocks with large volumes of organic carbon). From the maps the following observations are made:

- a) Higher quality potential source rocks are encountered in areas where shaly/coally facies are well developed.
- b) The Poolowanna Formation and equivalents show a larger areal expanse of good quality potential source rocks with the best development being in the northern part of PELs 5 & 6 and within the Nappamerri Trough.
- c) The Birkhead Formation contains high quality potential source rocks in the areas coinciding with older troughs.
- d) The Westbourne Formation shows relatively poorer potential source rocks throughout its distribution except in the Jackson-Naccowlah area and the southern Nappamerri Trough.
- e) The Murta Member contains higher quality potential source rocks in the Jackson-Naccowlah area and adjacent to Namur in the southern Nappamerri Trough.
- f) Areas of lower quality occur where the sequences thin and become sandier (i.e. over structural high trends and toward the basin margin). Hydrocarbon yield declines in these areas due to oxidizing conditions being more dominant and the presence of hydrogen poor organic matter.

CONCLUSIONS

This report synthesises all existing data relating to liquid chromatography, providing a basis to further source rock work to be carried out on a formation by formation basis. Various suggestions are made on how to handle the existing data to enable a more detailed interpretation.

Preliminary interpretation of basic geochemical parameters provide a regional view on the distribution and quality of potential source rocks contained in the four main Mesozoic source horizons.

From this study it has become apparent that the variation in source parameters closely parallels variations in sedimentary facies, with sandy areas being coincident with areas of poorer source quality. Thus source rock quality is reduced toward basin margins and over major structural highs due to the then prevailing oxidizing conditions and winowing of organic material.

The data suggests that the best quality source rocks occur within the basal Jurassic (Poolowanna Formation and equivalents) which has a wide areal distribution. The Birkhead Formation shows similar qualities but contains less total organic carbon. The Westbourne Formation and to a lesser extent, the Murta Member are secondary in quality. However, source beds within these units are likely to be thin and easily obscured by non-source lithologies in samples taken from composite cuttings.

The dominance of the Poolowanna Formation and the Birkhead Formation as primary source horizons upgrades the potential of the northern areas of the licence due to the widespread nature of the units.

Results from this study will be greatly aided by the inclusion of Rock-Eval and vitrinite reflectance data.

REFERENCES

- Burns, B.J. and Partridge, A.D., 1976. Geochemistry of ten core samples from the Pedirka and Cooper Basins, Central Australia. Esso Australia Ltd (unpubl.).
- Cook, A.C;, 1982. Organic Facies in the Eromanga Basin; in Moore, P.S., and Mount, T.J. (compilers) Eromanga Basin Symposium, Summary Papers. Geol. Soc. Aust. and Petroleum Exploration Soc. Aust. Adelaide.
- Cook, A.J. and Ellis, J., 1982. Source potential and maturity of the sequence drilled in Thomas 1. Beach Petroleum N.L. (unpubl.).
- Cook, A.J. and Taylor, B.A., 1982. The organic petrology of samples from a selected group of wells in the southern Cooper Basin of South Australia. Delhi Petroleum Pty Ltd (unpubl.).
- Dickey, P.A. and Hunt, J.M., 1972. Geochemical and hydrogeologic methods of prospecting for stratigraphic traps. American Association of Petroleum Geologists, Memoir 16, 136-167.
- Esquevin, J., Cassou 4.M. and Blanc, R., 1977. Source rock analysis of three Durham Downs core samples. Delhi Petroleum Pty Ltd (unpubl.).
- Farooqi, K., 1982. Source rock analysis of samples from Strzelecki 4, South Australia. Delhi Petroleum Pty Ltd (unpubl.).
- Hunt, J.M., 1979. Petroleum Geochemistry and Geology. W.H. Freeman and Company. San francisco.
- Hunt, J.W., 1985. Regional Isopach Maps of the Jurassic sequence in the Eromanga Basin: A Preliminary approach. <u>Delhi Petroleum Pty. Ltd.</u> (unpubl.).
- Johnstone, D.C., 1984. Source rock analysis of samples from Jack Lake 1 and Welcome Lake 1, Patchawarra Southwest Block, S.A. Delhi Petroleum Pty Ltd (unpubl.).
- Lijmbach, G.W.M., 1975. On the origin of petroleum; in Proc. 9th World Petrol. Cong. v2, Geology, pp. 357-369. Applied Science Publ., London.
- McKirdy, D.M., 1981. Petroleum geochemistry and source rock potential of the Arrowie, Pedirka, Cooper and Eromanga Basins, Central Australia. (Part 2 Pedirka Basin and superjacent Eromanga Basin). Delhi Petroleum Pty Ltd (unpubl.).
- McKirdy, D.M., 1982. Petroleum geochemistry and source rock potential of the Arrowie, Pedirka, Cooper and Eromanga Basins, Central Australia. (Part 4 Cooper Basin and superjacent Eromanga Basin). Delhi Petroleum Pty Ltd (unpubl.).
- Metter, R.E., 1978. Geochemical analysis of rock and oil samples from Poolowanna 1, Pedirka Basin, South Australia. Exxon Production Research Co. Report for Esso Australia Ltd (unpubl.).
- Moore, P.S., 1982a. Hydrocarbon potential of the Arckaringa region, northern South Australia. $\underline{APEA\ J.}$, 22(1), 237-253.
- Moore, P.S., 1982b. Source rock analysis of samples from Erabena 1, Simpson Desert Region, S.A. Delhi Petroleum Pty Ltd (unpubl.).
- Moore, P.S., 1982c. Source rock analysis of samples from Walkandi 1, Simpson Desert Region, S.A. <u>Delhi Petroleum Pty Ltd</u> (unpubl.).

- Moore, P.S., 1983. Source rock analysis of samples from Kuncherinna 1, Simpson Desert Region, S.A. Delhi Petroleum Pty Ltd (unpubl.).
- Moore, P.S., 1984. Jurassic and Triassic stratigraphy and hydrocarbon potential of the Poolowanna Trough (Simpson Desert Region), northern South Australia. Delhi Petroleum Pty Ltd (unpubl.).
- Mortimore, I.R., 1983a. Source rock analysis Galway Block. <u>Delhi</u> Petroleum Pty Ltd (unpubl.).
- Mortimore, I.R., 1983b. Jackson South 1 source rock evaluation. Delhi Petroleum Pty Ltd (unpubl.).
- S.A.O.G.C., 1983a. Geology and hydrocarbon potential of the Cooper Basin west flank, P.E.L.s 5 and 6, South Australia. Delhi Petroleum Pty Ltd (unpubl.).
- S.A.O.G.C., 1983b. Geology and hydrocarbon potential of the Tinga Tingana Block. P.E.L.s 5 and 6, South Australia. <u>Delhi Petroleum Pty Ltd</u> (unpubl.).
- Saxby, J.D., 1977. Source rock analysis on samples from thirteen Australian sedimentary basins. Bureau of Mineral Resources (unpubl.).
- Senior, B.R. and Habermehl, M.A., 1980. Structure, hydrodynamics and hydrocarbon potential, central Eromanga Basin, Queensland, Australia. BMR Journal of Aust. Geol. and Geophys., 5, 47-55.
- Smyth, M. and Saxby, J.D., 1981. Organic petrology and geochemistry of source rocks in the Pedirka-Simpson Desert Basins, central Australia. APEA J, 21(1), 187-199.
- Stanmore, P.J. and Johnstone, D.C. 1983. Geothermal gradients and petroleum potential in PELs 5 & 6 and ATP 259P. Delhi Petroleum Pty Ltd (unpubl.)
- Stanmore, P.J., 1983. Analysis of bitumen from three water bores in the Eromanga Basin. Delhi Petroleum Pty Ltd (unpubl.).
- Tissot, B.P. and Welte, D.H., 1978. <u>Petroleum formation and occurrence</u>. Springer-Verlag, Berlin.
- Vincent, P.W., 1982a. Source rock evaluation report for Hume 1. <u>Delhi</u> Petroleum Pty Ltd (unpubl.).
- Vincent, P.W., 1982b. Source rock evaluation report for Naccowlah 1. Delhi Petroleum Pty Ltd (unpubl.).
- Vincent, P.W., 1982c. Source rock evaluation report for Wimma 1. <u>Delhi</u> Petroleum Pty Ltd (unpubl.).
- Vincent, P.W., 1983a. Source rock evaluation report for Barrolka East 1. Delhi Petroleum Pty Ltd (unpubl.).
- Vincent, P.W., 1983b. Source rock evaluation report for Jackson 1. <u>Delhi</u> Petroleum Pty Ltd (unpubl.).
- Vincent, P.W., 1983c. Source rock evaluation report for Karmona East 1. Delhi Petroleum Pty Ltd (unpubl.).
- Vincent, P.W., 1983d. Source rock evaluation report for Tartulla 1. Delhi Petroleum Pty Ltd (unpubl.).

Vincent, P.W., 1983e. Source rock evaluation report for Wackett 1. <u>Delhi</u> Petroleum Pty <u>Ltd</u> (unpubl.).

Vincent, P.W., 1983f. Source rock evaluation report for Wareena 1. <u>Delhi</u> Petroleum <u>Pty Ltd</u> (unpubl.).

Vincent, P.W., 1983g. Source rock evaluation report for Wills 1. <u>Delhi</u> Petroleum Pty Ltd (unpubl.).

Vincent, P.W., Mortimore, I.R. and McKirdy, D.M., 1985. Hydrocarbon generation, migration and entrapment in the Jackson-Naccowlah area, ATP 259P, southwestern Queensland. $\underline{\text{APEA J.}}$ 25(1).

APPENDIX A Analytical results

WELL: ADRIA DOWNS #1

No.	INTERVAL (f†)	SAMPLE TYPE	TOC (w†%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT 	AROM	ONS -(w†%)	ASHP	LOC	HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
				,						4.4.0	165.0	20.7
1	600-900	CT	3.20	650		18.6	6.8	30.9	29.5	14.2	165.0	20.3
2	900-1200	CT	4.00	1304	3.3	2.5	7.6	15.8	55.5	18.6	131.7	32.6
3	1200-1500	CT	1.90	569	5.5	11.7	6.6	38.3	36.9	6.5	104.0	29.9
4	1500-1800	CT	1.95	815	4.5	7.5	3.3	22.9	49.0	17.3	88.0	41.8
5	1800-2100	CT	1.55	688	5.8	8.4	4.6	23.8	45.6	17.6	89.5	44.4
6	2100-2400	CT	1.25	584	5.3	7.1	4.2	17.1	53.1	18.5	66.1	46.8
7	2400-2700	CT	2.65	1789	10.7	9.2	6.7	26.2	51.8	6.1	284.4	67.5
8	2700-3000	CT	1.30	731	9.1	8.9	7.3	19.2	62.2	2.4	118.4	56.2
9.	3000-3120	CT	1.10	497	4.7	9.7	0.7	17.8	51.8	20.0	51.7	45.2
10	3120-3230	CT	0.70	533	6.7	6.4	2.4	15.1	56.2	19.9	46.9	76.2
11	3230-3380	CT	0.80	789	14.5	7.0	7.7	16.0	60.4	8.9	116.0	98.6
12	3380-3440	CT	0.90	658	6.3	4.2	4.4	18.2	56.3	16.9	56.6	73.1
13	3440-3640	CT	0.40	829	20.3	4.4	5.4	13.8	57.4	19.0	81.1	207.0
14	3640-3940	CT	0.25	600	28.8	7.3	4.7	9.9	59.7	18.4	72.0	240.0
15	3940-4100	CT	0.20	508	20.8	2.6	5.6	8.1	61.9	21.8	41.7	245.0
16	4100-4170	CT	0.55	669	4.1	3.0	0.4	8.7	82.0	5.9	22.8	122.0
17	4170-4300	CT	0.30	622	7.0	0.4	3.0	4.1	77.4	15.1	. 21.1	207.0
18	4300-4530	CT	0.15	408	20.7	4.5	3.1	15.8	71.0	5.6	31.0	272.0
19	4530-4860	CT	3.60	4388	7.9	3.4	3.1	4.8	86.0	2.7	285.5	122.0
20	4860-4910	CT	1.75	1764	12.7	8.4	4.2	12.8	69.1	5.5	222.7	101.0
21	4910-5020	CT	0.90	1256	12.5	4.8	4.1	8.4	76.3	6.4	112.1	140.0

WELL: ALKINA #1

No.	INTERVAL (ft)	SAMPLE TYPE	TOC (w+%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT	AROM		ASHP	LOC	HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
					;							
	0000 0500	O T	4 70	3565	2.2	1.1	1.6	4.0	91.8	1.5	96.2	82.9
ı	2280-2580	CT	4.30 2.50	1799	5.3	3.8	3.6	10.2	77.6	4.7	133.2	72.0
2	2580-2880	CT CT	1.54	1112	4.5	3.2	3.1	10.9	78.5	4.4	70.0	72.2
3	2880-3180	CT	1.46	1169	3.8	2.5	2.2	7.4	82.0	5.9	55.0	80.1
4	3180-3420			794	6.4	5.6	2.9	16.9	59.7	15.0	67.5	74.9
5	3420-3720	CT	1.06	1468	6.5	4.8	2.6	12.6	75.1	4.9	108.6	88.4
6	3720-4020	CT	1.66		3.8	4.3	1.1	13.9	62.4	18.3	32.9	70.0
7	4020-4320	CT	0.87	609	3.8	5.1	2.1	15.9	66.4	10.6	43.9	52.6
8	4320-4700	CT	1.16	610	15.4	12.5	3.6	15.1	57.8	11.0	169.7	95.8
9	4700-5000	CT	1.10	1054		8.0	3.7	15.2	58.1	15.0	160.8	154.4
10	5000-5066	CT	0.89	1374	18.1	2.9	1.9	4.5	87.0	3.6	191.9	201.9
11	5066-5172	CT	1.98	3997	9.7				48.8	7.8	489.1	256.4
12	5172-5480	CT	0.66	1692	74.1	17.5	11.4	14.5		12.9	50.8	154.9
13	5492-5790	CT	0.41	635	12.4	6.2	1.8	22.6	56.5		28.9	245.4
14	5816-5907	∕CT	0.24	589	12.0	4.4	0.5	19.1	62.7	13.2	994.6	155.4
15	5907-6184	CT	4.00	6215	24.9	10.8	5.2	9.5	67.8	6.8		
16	6184-6500	CT	0.29	750	26.1	8.7	1.4	25.1	47.1	17.6	75.7	258.6
17	6500-6810	CT	0.33	926	14.9	3.4	1.9	13.5	65.2	16.0	49.1	280.6
18	6810-7110	CT	1.14	2378	6.7	2.1	1.1	3.4	90.2	3.2	76.1	208.6
19	7110-7200	CT	0.66	1490	18.5	4.8	3.4	7.6	81.1	3.1	122.2	255.8
20	7200-7310	CT	1.72	2222	10.7	4.6	3.7	10.7	72.3	8.7	184.4	129.2
21	7310-7560	CT	0.39	473	16.9	11.5	2.4	13.1	54.4	18.6	65.8	121.3
22	7560-7870	CT	0.78	481	7.1	10.5	1.0	22.1	49.9	16.5	55.3	61.7
23	7870-8170	CT	0.20	640	22.4	3.1	3.9	4.7	78.7	9.6	44.8	320.0
24	8170-8389	CT	0.32	768	30.5	12.2	0.5	5.8	74.1	7.5	97.5	. 240.0
25	8389-8690	CT	27.70	4188	0.7	1.1	3.7	9.4	84.3	1.4	200.8	15.1
26	8690-8795	CT	4.55	1121	0.9	2.8	0.7	22.2	68.4	5.9	39.2	24.6

WELL: BARROLKA EAST #1

No.	INTERVAL (ft)	SAMPLE TYPE	TOC (wt%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT	AROM	ONS -(w†%)	ASHP	LOC 	HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
1	1200-1500	CT	1.62	1222	6.0	5.1	2.8	20.4	65.1	6.6	96.5	75.4
2	2400-2700	CT	3.06	2240	2.9	1.9	2.0	8.2	87.5	0.4	87.4	73.2
3	2700-3000	CT	1.87	1456	7.6	5.6	4.1	17.7	69.8	2.9	141.3	77.9
4	3000-3340	CT	2.66	1634	3.4	3.0	2.6	12.2	71.5	10.7	91.5	61.4
5	3340-3420	CT	1.86	2122	12.3	6.6	4.2	15.2	71.9	2.1	229.2	114.1
6	3420-3600	CT	2.38	1885	9.3	7.4	4.4	15.7	70.9	1.7	222.4	79.2
7	3600-3900	CT	1.02	661	7.0	6.1	4.7	17. 0	63.4	8.7	71.4	64.8
8	3900-4200	CT	0.94	591	4.2	3.9	2.8	16.4	71.1	5.8	39.6	62.9
9	4200-4500	CT	0.76	641	7.5	5.9	3.0	16.1	72.5	2.5	57.0	84.3
10	4600-4900	CT	0.84	655	10.5	9.5	3.9	18.2	63.6	4.8	87.8	78.0
11	4900-5140	CT	0.78	1809	18.8	5.3	2.8	5.3	84.2	2.5	146.5	231.9
12	5140-5390	CT	0.55	927	14.5	4.5	4.1	11.4	78.9	1.0	79.7	168.5
-13	5390-5690	CT	0.48	857	24.8	9.3	4.6	12.7	67.2	6.3	119.1	178.5
14	5750-5840	CT	2.26	3709	25.4	9.4	6.1	9.5	72.8	2.2	574.8	164.1
15	5840-6070	CT	2.70	4447	19.1	6.7	4.9	5.4	81.3	1.6	515.8	164.7
16	6070-6380	CT	0.22	552	18.1	6.5	0.7	8.6	80.0	4.4	39.7	250.9
17	6380-6680	CT	0.80	1240	18.0	6.5	5.1	10.0	75.1	3.3	143.8	155.0
18	6680-6830	CT	4.28	3962	3.7	2.1	1.9	3.2	90.4	2.3	158.5	92.6
19	6830-7140	CT	1.14	1252	17.2	10.1	5.6	12.9	65.6	5.7	196.5	109.8
20	7140-7440	CT	0.21	618	21.8	5.8	1.6	10.7	69.3	12.6	45.7	294.3
21	7440-7740	CT	0.79	437	7.3	11.7	1.5	12.4	67.9	6.6	57.7	55.3
22	7740-8050	CT	0.13	331	16.0	4.7	1.6	13.8	75.1	4.7	20.9	254.6
23	8050-8220	CT	0.08	348	51.3	11.0	0.8	8.5	73.3	6.4	41.1	435.0
24	8220-8460	CT	16.90	4377	0.1	0.2	0.2	1.3	91.9	6.4	17.5	25.9
25	8426	C	28.30	4086	0.8	1.0	4.9	20.4	71.3	2.4	240.4	14.4
26	8460-8760	CT	13.10	3253	0.5	1.1	0.8	2.3	91.0	4.7	61.7	24.8
27	8500-8530	CT	17.50	4189	2.6	6.1	4.9	22.9	58.9	7.2	460.1	23.9
28	8760-8820	CT	3.50	1783	1.5	1.7	1.2	9.6	82.1	5.5	51.7	50.9

WELL: BEANBUSH #1

No.	INTERVAL (ft)	SAMPLE TYPE	TOC (w+%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT	AROM	ONS (w+%)	ASHP	LOC 	HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
1	874018"	С	2.50	3129	26.3	11.3	9.7	24.1	45.6	9.3	656.3	125.0
1	1086919"	Č	5.23	1501	2.1	3.7	3.7	17.3	58.2	17.1	111.1	28.7
3	11646'1"	č	0.51	223	7.2	10.1	6.4	24.8	25.7	33.0	36.9	43.8
WELL	: BELAH #1											
N1	INTERVAL	SAMPLE	TOC	EOM	HC YEILD	SAT	AROM	ONS	ASHP	LOC	HC TOTAL	
No.	(ft)	TYPE	(w+%)	(ppm)	(mg/g TOC)			-(w+%)			(ppm)	(mg/g TOC)
							<u></u>					
1	2900-3100	СТ	1.05	615	5.0	6.3	2.2	19.0		13.6	52.3	58.6
2	3100-3400	CT	0.65	434	6.3	7.0	2.5	22.0	51.0	17.5	41.2	66.8
3	3400-3700	CT	0.85	358	4.6	8.7	2.2	21.8	49.8	17.5	39.0	42.1
4	3700-4000	CT	0.75	519	4.4	5.1	1.3	13.6	34.6	45.5	33.2	69.2
5	4100-4400	CT	1.65	1218	10.3	8.7	5.2	12.6	66.4	7.1	169.3	73.8
6	4400-4650	CT	0.75	732	15.6	11.8	4.2	12.6	56.5	15.0	117.1	97.6
7	4650-4950	CT	0.70	820	22.7	14.2	5.2	13.2	54.5	12.9.	159.0	117.1
8	4950-5250	CT	0.50	603	32.0	19.3	7.2	17.5	41.9	14.0	159.8	120.6
ğ	5250-5310	CT	1.00	1526	19.8	6.9	6.1	19.6	65.3	2.1	198.4	152.6 135.4
10	5310-5380	CT	2.00	2707	24.5	10.8	7.3	10.3	67.7	3.9	490.1	224.6
11	5380-5600	CT	0.35	786	28.7	7.7	5.1	8.1	73.9	5.3	100.6	63.5
12	5780-6080	CT	5.20	3304	2.3	1.6	2.0	3.4	89.4	3.6	118.9	46.0
13	6080-6250	CT	12.60	5791	1.7	1.5	2.1	5.6	89.8	0.9	208.7	41.3
14	6250-6460	CT	3.30	1362	4.5	5.3	5.6	13.1	69.5	6.6	148.6	49.9
15	6460-6520	CT	8.25	4114	5.0	5.8	4.2	7.4	78.0	4.5	411.7 83.9	39 . 1
16	6520-6710	CT	3.30	1290	2.5	3.5		9.5	81.4	2.5	62 . 7	46.4
17	6710-7010	CT	10.40	4828	0.6	0.6		1.4	94.3	3.0	107.2	46.2
18	7010-7310	CT	5.80		1.8	2.0		7.8		1.6	98.4	81.6
19	7310-7560	CT	1.80	1469	5.5	3.3	3.4	7.4	85.0	0.8	70.4	01.0

WELL	: BOORTHANN	A #1										
No •	INTERVAL (ft)	.	TOC (wt%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT	AROM	ONS -(w+%)	ASHP	LOC		EOM(per TOC) (mg/g TOC)
1	1940-1990	CT	5.95	16205	28.3	6.6	3.8		78.0	0.0	1685.6	272.4
2	2390-2400	CT	0.45	417	37.2	30.6	9.5	30.6	16.3	13.0	167.3	92.7
3	3010-3020	CT	0.30	908	120.8	34.9	5.0	33.3	17.8	9.0	362.3	302.7
4	3260-3270	CT	0.30	472		6.1	7.2	43.2	29.1	14.4	62.8	157.3
5	3710-3720	CT	0.40	687	7.7	3.9	0.6	40.7	25.3	31.3	30.9	171.8
WELL	_: BYCOE #1											
No.	INTERVAL	SAMPLE	TOC	EOM	HC YEILD	SAT	ARON	ons	ASHP	LOC	HC TOTAL	EOM(per TOC)
NO.	(ft)	TYPE	(wt%)	(ppm)	(mg/g TOC)			(wt%))		(ppm)	(mg/g TOC)
												447.4
1	3960-3990	CT	0.77	1135		10.3	5.0				173.7	147.4
	4670-4700	CT	0.72	1126	25.5	9.1	7.2	23.3	60.4		183.6	156.4
3	4940-4970	CT	1.31			7.2					200.8	109.5 232.9
4	4970-5000	CT	0.80	1863	19.3	4.7	3.6	9.5	82.2		154.6	232.9
WEL	L: CANNUWAU	KANTNNA	BORE									
No.	INTERVAL	SAMPLE	TOC	EOM	HC YEILD	SAT	ARO	M ONS	ASHP	LOC		EOM(per TOC)
NO •	(ft)		(wt%)	(ppm)		1		(wt%)		(ppm)	(mg/g TOC)
										10.0	E7 6	161.3
1	80	SWC	0.40	645	13.4			10.6		19.8	5 3. 6	577 . 5
2	100	SWC	2.08	12013	1.7		0.1	1.6	88.6	9.5	36.0 61.7	58 . 9
3	109	SWC	3.74		1.6	2.1	0.7	5.5	91.5	0.3	90.5	225.9
4	118	SWC	0.22	497	41.1	17.3	0.9	41.8	37.3	2.7	30.J	<i>LLJ•)</i>

WELL: CHANDOS #1

SAMPLE TOC

TYPE (wt%)

INTERVAL

(ft)

No.

6

7

8

9

10

11

12

5850-5880

5880-5910

5910-5940

6000-6030

6030-6060

6060-6090

5908

CT

CT

SWC

CT

CT

CT

CT

3.12

7.40

8.55

3.34

19.90

21.20

7.35

3337

6770

10643

2046

10214

4389

8810

13.3

16.5

35.1

9.9

4.0

4.2

6.9

EOM

					,
1	4682	C 1.15	505	26.0 32.9 27.140.0	
2	5925	C 16.30	6153	6.016.483.6	
3	7123	C 0.15	402	18.0 2.0 4.793.3	
4	7772	C 0.35	627	61.0 23.6 10.565.9	
5	7976	C 21.10	26597		
6	7987	C 0.97	409	12.0 7.7 19.6 22.4 50.3 **Data from McKirdy 1982	
O	1301	0 0.57	405	12.0	
WELL	: CHANDOS S	OUTH #1			
71 L. L. L.	. 011/11/200 0				
No.	INTERVAL	SAMPLE TOC	EOM	HC YEILD SAT AROM ONS ASHP LOC HC TOTAL EOM(per TOC)
	(f+)	TYPE (wt%)		(mg/g TOC) (w+%) (ppm) (mg/g TOC)	
1	7823	C 57.30	7000	6.0 16.3 34.6 26.1 23.0 **Data from McKirdy 1982	
•				•	
WELL	: CHOOKOO #	11			
No.	INTERVAL	SAMPLE TOC	EOM	HC YEILD SAT AROM ONS ASHP LOC HC TOTAL EOM(per TOC)
	(ft)	TYPE (wt%)	(ppm)	(mg/g TOC) $ (w+%) $ (ppm) $(mg/g TOC)$	
1	5250-5280	CT 1.54	387	9.2 25.6 11.0 43.1 20.3 141.5 25.1	
2	5400-5430	CT 1.14	1363	23.6 12.1 7.6 26.0 54.3 268.6 119.6	
3	5460-5490	CT 3.60	4164	19.2 7.8 8.8 26.7 56.7 691.4 115.7	
4	5550-5580	CT 1.03	1739	80.2 36.8 10.7 26.2 26.3 825.9 168.8	
5	5790-5820	CT 2.32	3871	19.9 5.4 6.5 13.1 75.1 460.8 166.9	

5.8 6.6

6.8 9.3

3.6 3.4

5.8 10.8

9.4

4.1

11.2 6.8

18.8

3.6

19.4 68.1

14.5 69.5

11.9 80.4

68.3

51.0

84.7

62.1

13.8

20.8

8.3

21.3

HC YEILD SAT AROM ONS ASHP LOC

(ppm) (mg/g TOC) |-----(w+%)-----

HC TOTAL EOM(per TOC)

(ppm)

(mg/g TOC)

107.0

91.5

124.5

61.3

51.3

59.7

41.6

414.0

1218.8

3001.8

· 786.1

1464.0

329.6

307.2

WELL: COLSON #1

No.	INTERVAL (ft)	SAMPLE TYPE	TOC (w†%)	EOM (ppm)	HC YEILD (mg/g TOC)		AROM		ASHP	LOC	HC TOTA		M(per TC mg/g TOC	
	, and the time the time the time the time the										a			/
1	4299-4349	CT	1.20	465	9.0	7.5 1	4.7	35.1	42.7					
2	4349-4399	CT	0.93	357	8.0	10.9	8.9	37.0	43.2					
3	5919-5929	CT	0.02	63										
4	5939-5949	CT	0.05	166	36.0	4.7	6.5	25.2	63.6					
5	6254	SWC	1.47	770	8.0	6.0	9.1	36.2	48.7					•
6	6298	SWC	0.30	502	21.0	3.9	8.4	33.3	54.3					
7	6349	SWC	0.10	89	8.0	6.3	2.5	23.2	68.1					
8	5419	SWC	31.60	22560	13.0	4.5 1	3.9	35.1	46.5	•				
9	6798	SWC	0.57	243	12.0	15.7 1	3.2	20.3	50.7					
10	7011-7016	CT	74.00	35065	12.0	4.8 1	9.8	31.1	44.3					
11	7068 – 7078	CT	75.50	48175	14.0	5.2 1	6.2	32.3	46.2					
12	7098	SWC	2.85	1480	13.0	7.5 1	7.5	46.9	40.1					
13	7128-7139	CT	13.90	8000	13.0	6.3 1	6.8	31.4	45.4					
14	7159-7168	CT	74.10	46755	14.0	6.6 1	6.2	36.7	40.4			•		
15	7948	SWC	0.21	620	161.0	47.1	7.4	20.6	24.8	STAINED	**Data	from	McKirdy	198

WELL: COONATIE #2

No.	INTERVAL (ft)	SAMPLE TYPE	TOC (w+%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT 	AROM	ONS -(w†%)	ASHP	LOC 	HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
												•
1	3300-3600	CT	2.10	1370	3.3	2.8	2.2	11.7	71.4	11.8	68.5	65,2
2	3600-3900	CT	1.71	1519	4.7	2.8	2.5	14.5	67.1	13.1	80.5	88.8
3	3900-4200	CT	1.47	1070	5.2	4.1	3.0	15.3	63.5	14.0	76.0	72.8
4	4200-4500	CT	1.17	732	10.2	12.6	3.7	17.6	63.3	2.8	119.4	62.6
5	4500-4800	CT	1.56	1116	4.6	3.9	2.6	15.0	70.4	8.1	72.5	71.5
6	4800-5100	CT	1.06	876	5.1	4.2	2.0	11.4	78.0	4.4	54.3	82.6
7	5100-5400	CT	0.92	515	4.9	5.3	3.4	14.7	72.0	4.6	44.8	56.0
8	5400-5700	CT	0.89	639	5.8	5.9	2.2	9.5	77.9	4.5	51.8	71.8
9	5700-5930	CT	1.02	462	3.7	5.7	2.5	44.4	45.4	1.9	37.9	45.3
10	5930-6140	CT	0.96	939	15.1	11.0	4.4	13.3	66.1	5.2	144.6	97.8
11	6140-6260	CT	0.49	149B	28.7	7.8	1.6	6.1	83.1	1.5	140.8	305.7
12	6260-6560	CT	0.28	649	45.2	16.6	2.9	10.6	63.4	6.6	126.6	231.8
13	6560-6860	CT	0.29	609	37.4	14.5	3.3	12.5	64.1	5.6	108.4	210.0
14	6860-7110	CT	0.38	740	140.0		63.4	13.4	63.7	11.0	532.0	194.7
15	7110-7410	CT	3.18	5359	19.4	6.4	5.1	8.7	77.7	2.1	616.2	168.5
16	7410-7710	CT	0.30	721	26.9	7.4	3.8	12.0	75.7	1.0	80.7	240.3
17	7710-8010	CT	0.27	568	25.2	8.7	3.3	10.4	76.3	1.2	68.2	210.4
18	8010-8350	CT	1.33	1960	26.4	14.5	3.4	2.7	73.0	6.4	350.9	147.4
19	8350-8650	CT	0.14	409	43.8	12.9	2.1	6.0	63.7	15.3	61.3	292.1
20	8950-9230	CT	0.22	933	123.0	26.9	2.1	7.6	48.0	15.4	270.6	424.1
21	9230-9460	CT	44.10	16615	2.4	2.8	3.5	5.9	77.7	10.0	1047.4	37.7
22	9460-9640	CT	34.40	10547	0.7	1.0	1.4	1.4	86.8	9.4	253.5	30.7
23	9650-9760	CT	25.20	8718	1.0	1.6	1.3	2.4	84.9	9.7	252.9	34.6
24	9760-9920	CT	18.50	8707	6.0	6.8	6.0	8.7	73.7	4.8	1115.3	47.1
25	9930-9970	CT	41.60	26460	1.3	0.8	1.3	2.3	81.6	14.1	555.6	63.6

WELL: COOTANOORINA #1

No.	INTERVAL (ft)	SAMPLE TYPE	TOC (w†%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT 	AROM	ONS -(w+%)		LOC	HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)	
1 2 3 4	1742'8"-10" 2866'5"-6" 3045'10"-3040 2450-2460	C C C 5 C	2.70 0.25 0.15 0.75	1068 431 179 1430	5.3 64.3 17.1 56.4	10.3 33.7 11.8 23.7	3.6 2.5 5.9	21.1 23.4 11.2 37.9	17.5 54.7 9.1	14.2 21.4 19.8 23.4	142.2 160.9 25.6 423.4	39.6 172.5 119.4 190.7	
5 ,	3070-3080	CT	0.40	1342	183.2	8.1 4	16.5	21.2	7.8	16.4	732.7	335.5	
WEL	WELL: CORKWOOD #1												
No.	INTERVAL (ft)	SAMPLE TYPE	TOC (w†%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT	AROM		ASHP	LOC	HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)	
ens 140 44													
1	1500-1800	CT	12.70	6805	4.8	4.6		24.9	57.9	8.3	605.8	53.6	
2	1800-2100	CT	7.50	6385	5.5	3.7	2.8	20.4	68.3	4.8	414.9	85.1	
3	2100-2400	CT	2.10	1416	4.0	3.7	2.2	31.8	59.9	2.4	83.5	67.4	
4	2400-2700	CT	4.55	1833	3.0	3.9	3.6	35.3	40.9	16.1	137.5	40.3	
5	2700-3000	CT	1.75	1042	12.7	17.6	3.7	23.2	40.5	15.0	221.8	59 . 5	
6	3300-3600	CT	1.05	760	20.3	21.7	6.3	21.2	25.3	25.2	212.9	72.4	
7	3600-3900	CT	0.90	434	9.0	12.4	6.2	27.1	50.3	4.0	80.7	48.2	
8	3900-4200	CT	1.50	1117	13.5	7.5		28.3	34.5	19.0	203.1	74.4	
9	4200-4500	CT	1.00	673	8.0	3.5		3.0	32.4	30.6	80.1	67.3	
10	4500-4800	CT	0.85	693	23.5	21.8		33.4	26.6	11.2	199.8	81.6	
11	4800-5100	CT	0.40	492	25.2	13.2		20.3	46.1	13.1	100.9	123.1	
12	5100-5400	CT	1.55	1523	21.2		12.7	30.0	31.6	16.8	329.1	98.3	
13	5400-5700	CT	0.55	451	8.6	5.1	5.4	24.5	48.1	16.9	47.4	82.0	
14	5700-6000	CT	1.35	1175	26.5		25.4	26.7	29.7	13.2	357.5	87 . 1	
15	6000-6300	CT	5.55	1868	6.0	11.6	6.3	12.5	50.0	19.3	334.8	33.7	

WELL: CUMBROO #1

No.	INTERVAL (ft)	SAMPLE TYPE	TOC (w†%)	EOM (ppm)	HC YEILD (mg/g TOC)			4 ONS (wt%			HC TOTÂL (ppm)	EOM(per TOC) (mg/g TOC)
1	5781	С	0.54	1473	11.0			95				·
2	5797		25.30	4230	3.0			81				•
3	6348		3.13	6673	6.0			97				
4	6644		1.42	2820	4.0	_		97				
5	6646		1.16	703	15.0			17.0				
6	6657		22.50	10773	2.0			94				
7	7055		9.54	1173	4.0			21.2		**0 '	M. Ki.	4. 1000
8	7073	С	26.00	5350	2.0	2.	2	9/	.8	**Data	from McKir	ay 1982
No.	INTERVAL (ft)	SAMPLE TYPE	TOC (w†%)	EOM (ppm)	HC YEILD (mg/g TOC)					LOC		EOM(per TOC) (mg/g TOC)
1	3221	SWC	0.89	729	11.9	12.1	2.4	10.8	59.0	15.7	105.8	82.0
2	3669	SWC	0.72	830	11.0	5.3		11.6		0.0	78.9	115.3
3	4217	SWC	1.42	1686	44.9	34.1		13.8		6.4	637.1	118.7
4	5442	SWC	4.35	1010			7.6	-	34.3	0.0	499.5	75.3
5	5574	SWC	4.35	1713	5.9	8.2	6.7	22.2	58.3	4.6	255.4	39.4
WELL	.: CUTTAPIR	RIE #1			f							
No.	INTERVAL	SAMPLE	E TOC	EOM	HC YEILD	SAT	ARO	M ONS	ASHP	LOC	HC TOTAL	EOM(per TOC)
	(ft)		(wt%)	(ppm)	(mg/g TOC))		(wt%)		(ppm)	(mg/g TOC)
1	6039	SWC	0.82	1100	33.4	18.8	5.9	12.9		2.4	274.0	135.3
2	6373	SWC	0.58	1197	53.3	16.1	9.7		27.4	24.2	308.9	206.4
3	7052	SWC	1.24	2896	57.7	21.4	3.3	13.0	58.3	4.0	715.5	233.6

WELL: DARALINGIE #4

5624

5636

2

No.	INTERVAL (ft)	SAMPLE TYPE	TOC (w†%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT	AROM	ONS -(w+%)	ASHP	LOC 	HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
1	1500-1800	CT	0.90	352	5.3	9.6	4.0	38.3	36.0	12.1	47.9	39.1
2	2400-2700	CT	2.95	1148	1.4	1.2	2.5	37.3	40.3	18.7	42.5	38.9
3	2700-3000	CT	2.00	969	3.7	3.8	3.8	36.4	50.3	5.7	73.7	48.5
4	3600-3900	CT	0.85	410	3.5	6.5	0.8	23.8	50.4	18.5	29.9	48.2
5	4200-4500	CT	0.80	334	3.8	7.1	2.0	32.0	47.1	11.8	30.4	41.7
6	4500-4800	CT	0.85	565	7.3	7.2	3.8	21.0	59.2	8.8	62.2	66.5
7	4800-5100	CT	0.90	480	7.6	9.3	4.9	30.6	41.6	13.6	68.1	53.3
8	5400-5700	CT	1.40	2698	17.7	4.5	4.7	11.1	71.1	8.6	248.2	192.7
9	5700-6000	CT	1.60	2425	27.7	9.3	9.0	20.0	56.7	5.0	443.9	151.6
10	6000-6300	CT	0.95	1211	20.8	7.6	8.7	16.8	55.1	11.8	197.4	127.5
11	6300-6570	CT	0.55	437	13.8	9.6	7.8	24.3	47.6	10.7	76.1	79.5
WELL	: DELLA #1				·							
No.	INTERVAL (ft)	SAMPLE TYPE	TOC (wt%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT 	AROM	ONS -(w+%)	ASHP	LOC	HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)

43.0 3.5 39.7 13.8 15.7 6.7 40.3 37.3 **Data from McKirdy 1982

.114.0 45.0

0.98

6.40

C

2400

12980

WELL: DILCHEE #1

No.	INTERVAL (ft)	SAMPLE TYPE	TOC (w+%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT 	AROM		ASHP	LOC	HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
												24.2.2
1	0-300	CT	0.20	436	55.4	16.5	8.9	19.8	38.8	16.0	110.7	218.0
2	300-600	CT	5.05	1822	6.4	13.7	3.9	31.0	46.3	5.1	320.9	36.1
3	600-900	CT	0.75	389	2.7	4.0	1.2	25.0	54.4	15.4	20.2	51.9
4	900-1200	CT	1.40	484	3.8	8.2	2.9	28.6	43.5	16.8	53.8	34.6
5	1200-1500	CT	1.25	573	4.3	6.3	3.1	27.4	47.4	15.8	53.8	45.8
6	1500-1800	CT	0.80	470	4.9	6.2	2.2	26.2	46.5	18.9	39.4	58.7
7	1800-2100	CT	0.95	584	6.3	4.2	6.0	22.8	43.1	23.9	59.6	61.5
8.	2100-2400	CT	6.40	2739	3.9	2.9	6.1	25.2	51.8	14.0	246.5	42.8
9	2400-2700	CT	3.90	2191	4.7	3.5	4.8	21.0	52.5	18.2	181.9	56.2
10	2700-3000	CT	1.70	1224	4.6	3.2	3.2	22.0	56.5	15.1	78.3	72.0
11	3000-3300	CT	1.35	566	4.2	4.6	5.5	23.4	50.8	15.7	57.1	41.9
12	3300-3600	CT	1.20	435	3.8	5.3	5.3	30.0	44.0	15.4	46.0	36.2
13	3600-3900	CT	1.05	460	5.6	10.7	2.0	25.4	53.4	8.5	58.4	43.8
14	3900-4200	CT	1.15	492	5.1	6.3	5.6	27.1	50.5	10.5	58.6	42.8
15	4200-4500	CT	1.05	425	4.5	4.5	6.6	26.1	49.8	13.0	47.2	40.5
16	4500-4720	CT	0.95	509	7.1	9.0	4.2	20.4	59.2	7.2	67.2	53.6
17	4720-5000	CT	0.60	·708	16.0	7.0	6.6	15.1	57.7	13.6	96.2	117.9
18	5000-5180	CT	0.85	722	9.3	5.2	5.7	15.5	59.8	13.8	78.7	84.9
19	5200-5600	CT	0.60	1434	21.7	4.5	4.6	9.0	65.5	16.4	130.5	239.0
20	5650-6100	CT	0.30	640	22.8	6.2	4.5	12.3	64.8	12.2	68.4	213.2
21	6100-6400	CT	0.45	1357	20.8	4.6	2.3	4.4	78.9	9.8	93.7	301.7
22	6400-6700	CT	0.20	304	25.5	13.1	3.7	19.3	57.8	6.1	51.0	151.9
23	6700-7000	CT	0.20	186	18.2	12.8	6.8	22.3	42.6	15.5	36.5	93.0
24	7010-7300	CT	73.40	6192	5.3	5.2	6.2	14.2	62.3	12.1	3865.8	46.2
25	7300-7550	CT	4.70	2354	6.5	7.3	5.6	9.7	59.8	17.6	303.8	50.1
26	7550-7770	CT	2.60	784	3.8	3.9	8.8	19.8	52.8	14.7	99.7	30.2
27	7770-7970	CT	29.60	13386	5.4	5.5	6.5	8.2	71.3	8.5	1605.5	45.2
28	7980-8190	CT	19.00	5910	4.0	6.4	6.4	10.7	62.5	14.0	756.4	31.1
29	8190-8400	CT	33.80	11094	1.4	. 1.3	2.9	4.2	89.6	2.0	465.6	32.8
30	8400-8700	CT	37.20	6561	1.0	1.6	4.3	10.1	74.8	9.2	386.3	17.6
31	8700-9000	CT	38.20	3852	0.6	0.9	5.4	8.1	74.9	10.7	243.1	10.1
32	9000-9153	СТ	49.70	4010	0.3	0.5	3.5	8.9	73.2	12.9	161.0	8.1

WELL: DULLINGARI #1

1.45

505517"-10"

1562

36.4

No.	INTERVAL (ft)	SAMPLE TYPE		EOM (ppm)	HC YEILD (mg/g TOC)	SAT 	AROM	ONS -(w+%	ASHP)	 LOC		EOM(per TOC) (mg/g TOC)
1	1405	С	1.44	729	21.0	8.4	33,1	64.5	24.0			
2	2503	С	2.68	1479	6.0	7.5	3.0	49.8	39.7			
3	3503	С	1.03	493		10.7		54.5	34.4		•	1
4	3966	С	0.60	208			0.5		34.0			
5	4957	С	1.72	1673		23.6		38.7	34.3			
6	6100	С	4.22	3979	15.0	9.7	6.2	32.7	51.4	**Data	from McKir	dy 1982
WEL	L: DULLINGAR	1 #5								,		
No.	INTERVAL	SAMPLE	TOC	EOM	HC YEILD	SAT	AROM	ONS	ASHP	LOC		EOM(per TOC)
	(ft)	TYPE	(w+%)	(ppm)	(mg/g TOC)			-(wt%)		(ppm)	(mg/g TOC)
								00.0	64.0			
1	4827	SWC	0.91		8.0				64.8			
2	4844	SWC	0.88	1062	14.0		3.9					
3	4849 '6"	SWC	0.97	679	16.0				41.1			
4	4855	SWC	0.66	557	20.0		4.4		48.5			
5	4861	SWC	0.29	339	22.0	14.8		44.5				
6	4863	SWC	1.39	993	18.0		6.7					
7	4866	SWC	0.55	462	17.0		6.3			CTAL	NED	
8	4908	SWC	0.13	1500	736.0		2.9				NED	
9	4978	SWC	0.87	649	12.0						to form Nak	'indu 1092
10	5006	SWC	0.58	678	25.0	15.1	8.2	<i>5</i> 4.4	44.3	^ ^ua	ta from McK	aray 1902
WEL	L: DULLINGAR	RI DM7 #	11									
No.	INTERVAL	SAMPLE	TOC	EOM	HC YEILD	SAT	AROM	n ons	ASHP	LOC		EOM(per TOC)
	(ft)	TYPE	(wt%)	(ppm)	(mg/g TOC)			(wt%)		(ppm)	(mg/g TOC)
	500015H 10H	0		E40	10.2	22.6	7 5	11 1	16 1	12 5	· 163.6	60.0
1	5002 15"-10"		0.90	540	18.2							
2	5007 15"-8"		0.60	707	26.9	15.7			34.6	42. I	161.3 339.2	117.9 88.4
3	5039 '4"-8"	С	1.25	1105	27.1				38.9		527 g	

24.1 9.7 14.6 43.3

527.8

8.3

107.7

WELL: DULLINGARI NORTH #1

No.	INTERVAL (ft)	SAMPLE TYPE	TOC (w+%)	EOM (ppm)	HC YEILD (mg/g TOC)		AROM		ASHP	LOC		TOTAL (ppm)	EOM(per (mg/g	
				0.07	- 0		7 0	C 4 7	27.0					
1	1320-1350	CT	1.99	827	5.0	8.2	3.2 2.5	64.7 75.7	23.9					
2	1710-1740	CT	1.49	1026	5.0	5.0			16.8					
3	2160-2190	CT	27.40	13819	5.0	3.4	5.7	62.3	28.6					
4	2280-2310	CT	12.20	8881	9.0	5.0	7.9	55.5	31.6					
5	2520-2550	CT	2.50	1043	10.0	14.9		47.1	27.9					
6	3060-3090	CT	1.80	692	7.0	11.3	5.7	51.8	31.2					
7	3540-3570	CT	1.98	302	2.0	10.6	4.1	46.5	38.8					
8	4260-4290	CT	1.69	684	5.0	7.5	5.8	46.2	40.5					
9	4560-4590	CT	1.45	886	11.0	11.4	6.4	45.6	36.6					
10	4800-4830	CT	1.36	745	8.0	8.3	5.4	43.8	42.6					
11	4883	SWC	0.81	657	16.0	15.8	3.3	40.0	40.9			,		
12	4958	SWC	0.71	680	19.0	13.9	5.5	41.8	38.8					
13	4967	SWC	1.38	798	12.0	15.6	5.2	34.9	44.3					
14	4980-5010	CT	8.40	5020	17.0	21.5		42.8	29.3					
15	5027	SWC	0.49	368	16.0	19.6	2.0	47.0	31.4			•		
16	5097	SWC	1.15	1238	28.0	20.4		35.0	39.2					
17	5100-5130	CT	1.00	891	25.0	17.7	9.8	3,2.1	40.4			•		
18	5341	SWC	0.47	757	32.0	15.1	4.8	51.5	28.6					
19	5794	SWC	0.59	933	44.0	22.1	5.8	23.1	49.0					
20	5880-5910	CT	1.26	1448	32.0	17.3	10.5	29.0	43.2					
21	5 9 29	SWC	0.56	915	51.0	26.3	5.1	26.2	42.4					
22	6042	SWC	0.43	1028	59.0	17.2	7.6	30.4	44.8					
23	6180-6210	CT	1.09	1128	17.0	8.3	8.0	31.1	52.6					
24	6300-6330	CT	0.84	1060	22.0	13.5	4.3	41.2	31.0					
25	6660-6690	CT	3.30	2067	10.0	10.6	4.6	60.6	24.2					
26	7020-7050	CT	9.40	5829	13.0	8.9	10.6	32.7	47.8					
27	7230-7250	CT	25.60	5967	4.0		10.7	39.0	43.8					
28	7237	SWC	3.00	814	9.0	26.1	7.6	55.4	10.9					
29	7380-7410	CT	7.10	2778	7.0	9.5	8.7	36.1	45.7					
30	7560-7590	CT	5.20	1775	7.0	7.3	11.8	33.6	47.3					
31	7645	SWC	0.67	658	33.0	30.6	3.2	53.3	12.9					
32	7680-7710	CT	9.10	4617	9.0		13.6	30.6	48.3					
33	7860-7890	CT	2.50	716	5.0	7.5		42.1	41.8		•			
34	8160-8190	CT	5.35	3084	7.0	6.0		44.1	43.2					
35	8340-8370	CT	8.20	3289	4.0	3.6		42.8						

Dullingarie North 1 (Continued)

36	8501	SWC	2.44	581	5.0	18.2	1.1	43.4	27.3			
37	8520-8550	CT	25.20	3476	2.0	2.3	8.6	55.5	33.6			
70	0040 0070	CT	6 15	1330	2.0	1 8	65	42.7	49.0	**Data	from McKirdy	1982

WELL: DURHAM DOWNS #1

No.	INTERVAL (ft)	SAMPLE TYPE	TOC (w+%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT AROM		ASHP)			EOM(per TOC) (mg/g TOC)
1 2 3	8298 8441 8516	SWC SWC SWC	1.67 5.18 5.66	560 2166 1154	12.0 12.0 7.6	8.0 28.3 9 8.4 20.2 6 6.1 30.2	43.1		3.5 2.4 5.0	200.1 622.2 431.5	33.0 42.0 21.0

WELL: ERABENA #1

No.	INTERVAL (ft)	SAMPLE TYPE	TOC (w†%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT 	AROM	ONS -(w+%)	ASHP	LOC	HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
1	1100-1400	CT	0.95	320	2.9	7.7	0.9	20.5	51.8	19.1	27.5	33.7
2	1400-1700	CT	0.60	286	1.8	2.5	1.3	26.3	46.6	23.3	10.9	47.6
3	1700-2000	CT	1.55	952	6.4	8.5	2.0	20.9	56.5	12.1	99.9	61.4
4	2000-2300	CT	3.00	1863	4.1	3.1	3.5	14.3	54.5	24.6	123.0.	62.1
5	2300-2380	CT	2.15	1606	3.6	2.7	2.1	11.0	68.6	15.6	77.1	74.7
6	2380-2680	CT	1.10	891	6.6	4.4	3.8	9.4	68.0	14.4	73.1	81.0
7	2680-2980	CT	1.10	553	4.0	5.6	2.3	12.6	65.7	13.8	43.7	50.3
8	2980-3280	CT	0.85	755	5.6	4.5	1.8	10.0	61.5	22.2	47.6	88.9
9	3280-3450	CT	0.60	557	6.9	5.1	2.3	12.8	58.8	21.0	41.2	92.8
10	3450-3750	CT	0.80	809	6.7	3.7	2.9	6.3	67.3	19.8	53.4	101.1
11	3750-4050	CT	1.05	541.	5.8	6.0	5.2	15.7	53.0	20.1	60.7	51.6
12	4050-4350	CT	0.75	406	7.5	8.4	5.4	14.1	49.3	22.8	56.1	54.2
13	4350-4420	CT	1.15	498	5.4	7.7	4.8	16.5	53.2	17.8	62.2	43.3
14	4420-4570	CT	0.90	587	12.0	11.9	6.5	21.4	45.9	14.3	108.0	65.2
15	4570-4870	CT	0.95	1950	25.3	5.9	6.4	15.1	68.4	4.2	239.9	205.3
16	4870-5170	CT	0.45	2304	20.5	2.2	1.8	8.2	69.5	18.3	92.2	512.1
17	5170-5470	CT	0.55	1663	33.3	6.4	4.6	10.9	62.6	15.5	183.0	302.5
18	5470-5770	CT	0.45	1233	19.2	3.0	4.0	10.4	79.1	3.5	86.3	274.0
19	5770-6070	CT	0.20	613	24.8	3.4	4.7	9.6	64.5	17.8	49.7	306.6
20	6070-6370	CT	0.10	416	36.2	5.2	3.5	9.2	79.2	2.9	36.2	416.1
21	6370-6450	CT	0.20	675	28.7	4.0	4.5	11.9	60.1	19.5	57.3	337.3
22	6450-6750	CT	2.95	4021	4.5	1.9	1.4	2.8	88.6	5.3	132.7	136.3
23	6750-7050	CT	1.00	1839	11.8	3.3	3.1	5.2	83.2	5.2	117.7	183.9
24	7050-7350	CT	12.50	23960	11.1	3.1	2.7	2.3	83.9	8.0	1389.8	191.7
25	7350-7650	CT	2.00	280	0.3	1.1	1.2	1.3	84.7	11.7	6.4	14.0
26	7650-7820	CT	1.60	1432	4.6	2.4	2.7	5.4	75.8	13.7	73.0	89.5
27	7820-8120	CT	1.05	1913	15.5	5.5	3.0	5.6	72.5	13.4	162.6	182.2

WELL: FLY LAKE #4

No.	INTERVAL (ft)	SAMPLE TYPE	TOC (w+%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT			ASHP		(ppm)	(mg/g TOC)
1	5694	SWC	0.60	1265	36.9	13.0	4.5	13.3	53.6	15.6	221.4	210.9
2	5751	SWC	0.40	2288	348.9	55.3	5.7	10.9	14.3	13.8	1395.7	572.0
3	5760	SWC	0.80	1561	118.8	37.4	23.5	4.3	28.1	14.6	950.0	195.0
4	5781	SWC	1.00	1222	27.5	19.8	2.7	15.9	45.6	16.0	274.9	122.2
5	5821	SWC	0.60	1488	34.5	11.2	2.7	8.7	55.7	21.7	206.8	248.0
6	5864	SWC	0.70	1190	38.8	19.5	3.3	14.3	39.1	23.8	271.3	170.0
7	5931	SWC	0.95	1910	43.4	17.3	4.3	7.9	40.6	29.9	412.5	201.0
8	5962	SWC	0.70	1408	53.7	20.7	6.0	10.0	52.7	10.6	376.0	201.2
9	5990	SWC	0.80	1800	33.3	11.1	3.7	13.4	58.7	13.1	266.4	225.0
10	6084	SWC	1.30	2488	28.8	11.8	3.3	14.7	51.3	18.9	374.9	191.0
11	6119	SWC	0.50	522	43.4	35.4	6.1	8.3	40.9	9.3	216.8	104.5

WELL: GIDGEALPA #2

No. INTERV	AL SAMPL			HC YEILD (mg/g TOC	SAT)	ARON	1 ONS (wt%	ASHP		HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
1 6890'10	u C	0.55	624	36.5	26.8	5.4	20.6	37.0	10.3	201.0	113.5

WELL: GILPEPPEE #2

No.	INTERVAL (ft)	SAMPLE TYPE	TOC (wt%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT	AROM	ONS -(w+%)	ASHP	LOC	HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
1	3000-3300	СТ	1.60	1460	8.2	4.9	4.1	16.4	59.0	15.6	131.3	91.2
2	3300-3600	CT	1.10	1031	11.0	8.1	3.6	16.2	57.2	14.9	120.6	93.7
3	3600-3900	CT	1.55	1178	9.3	7.9	4.3	18.3	63.5	6.0	143.5	75.9
4	3900-4200	CT	1.35	1130	5.2	4.5	1.7	10.5	75.0	8.3	70.1	83.7
5	4200-4500	CT	3.10	3792	33.9	20.9	6.8	26.7	42.2	3.4	1050.2	122.3
6	4500-4800	CT	1.00	787	16.0	14.6	5.7	23.3	39.6	16.8	159.8	78.7
7	4800-5100	CT	0.90	648	14.8	15.2	5.3	25.9	49.1	4.5	132.8	72.0
8	5100-5400	CT	1.05	822	14.9	13.1	6.0	19.9	44.5	16.5	156.8	78.2
9	5400-5700	CT	1.05	714	18.7	18.9	8.6	22.4	41.9	8.2	196.4	68.0
10	5700-6000	CT	2.20	3204	22.0	8.0	7.1	16.2	68.7	0.0	483.7	145.6
11	6000-6300	CT	0.90	1249	33.4	18.7	5.4	21.4	50.8	3.7	300.8	138.7
12	6300-6600	CT	3.55	4364	27.5	15.2	7.2	11.6	62.8	3.2	977.3	122.9
13	6600-6900	CT	1.70	2239	43.6	26.2	6.9	16.9	42.6	7.4	741.1	131.7
14	6900-7200	CT	0.45	952	29.8	10.4	3.7	13.3	66.1	6.5	134.3	211.6
15	7200-7320	CT	1.15	1920	28.9	12.1	5.2	15.3	67.4	0.0	332.0	166.9
16	7320-7600	CT	2.20	2844	14.6	7.3	4.0	9.4	76.1	3.2	321.4	129.3
17	7600-7700	CT	2.15	3184	12.9	5.0	3.7	9.6	75.3	6.4	277.0	148.1
18	7700-8000	CT	0.60	615	26.4	19.7	6.1	21.2	32.5	20.5	158.7	102.5
19	8000-8300	CT	1.25	999	27.4	27.8	6.5	21.9	37.0	6.8	342.6	79.9
20	8300-8600	CT	0.20	306	40.3	21.4	5.0	19.3	50.0	4.3	80.7	152.8
21	8600-8850	CT	0.15	320	31.8	12.2	2.7	10.6	59.6	14.9	47.7	213.2
22	8850-9060	CT	10.20	1929	1.2	2.7	3.6	16.5	71.5	5.7	121.5	18.9
23	9060-9360	CT	21.80	2982	1.0	2.1	4.9	20.0	65.5	7.5	209.1	13.7
24	9360-9660	CT	15.50	2592	1.2	2.7	4.7	20.3	68.6	3.7	191.5	16.7

WELL: GUNNA #1

No.	INTERVAL (ft)	SAMPLE TYPE	TOC (wt%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT AROM	-(w+%)	ASHP	 (ppm)	(mg/g TOC)
1	3930-3960	CT	1.87	1261	12.5	10.0 8.6	30.0	51.4	234.4	67.4
2	3990-4020	CT	1.88	2534	46.1	26.6 7.6	29.9	35.9	866.7	134.8
3	4050-4080	CT	1.89	2240	26.2	15.9 6.2	41.2	36.7	495.0	118.5
-	4890-4920	CT	0.95	1966	48.2	14.8 8.5	23.6	53.2	458.0	206.9
4		CT	1.58	3570	89.5	29.0 10.6	23.0	36.4	1413.4	225.9
5	4950-4980						7.0	86.0	1544.6	74.8
6	5250 -52 80	CT	29.50	22056	5.2	2.7 4.3				· · · ·
7	5310-5340	CT	16.80	14042	5.7	3.5 3.3	7.5	85.7	955.0	83.6
8	5430-5460	CT.	13.80	16843	10.6	5.1 3.6	8.5	82.8	1465.9	122.1
9	5550-5580	CT	24.30	9470	7.7	11.0 8.7	24.2	56.1	1867.0	39.0
-		• •	•			8.1 7.4	15.8	68.6	3350.2	53.9
10	5700-5730	CT	40.10	21598	8.4	0.1 /.4	17.0	00.0	JJJ0.2	2367

WELL: HUME #1

No.	INTERVAL (ft)	SAMPLE TYPE	TOC (w†%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT 	AROM	ONS -(w+%)	ASHP	LOC 	HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
1	300-600	CT	0.70	195	2.2	6.0	1.8	27.1	53.0	12.1	15.2	27.8
2	600-900	CT	0.75	416	4.9	6.1	2.8	22.6	46.4	22.1	37.0	55.4
3	900-1200	CT	0.70	297	8.3	14.7	4.9	34.5	37.4	8.4	57.9	42.2
4	1200-1500	CT	1.60	632	6.2	9.5	6.2	32.5	30.7	21.1	99.2	39.5
5	1500-1800	CT	2.95	1360	2.5	3.4	2.0	16.8	77.2	0.6	73.4	46.1
6	1800-2100	CT	4.75	2308	3.5	4.3	3.0	17.9	66.6	8.2	168.5	48.6
7	2100-2400	CT	2.10	1132	2.6	2.8	2.1	9.2	80.7	5.2	55 . 5	53.9
8	2400-2700	CT	1.95	1058	2.6	2.9	1.9	9.4	79.3	6.5	50.8	54.3
9	2700-3000	CT	1.25	609	3.6	4.8	2.5	13.6	60.7	18.4	44.4	48.7
10	3000-3300	CT	1.20	677	4.2	5.9	1.5	15.4	68.9	8.3	50.1	56.4
11	3300-3600	CT	0.95	485	4.6	5.8	3.2	19.8	68.8	2.4	43.7	51.1
12	3600-3900	CT	0.90	513	5.5	6.4	3.2	24.9	56.1	9.4	49.2	57.0
13	3900-4200	CT	0.75	319	3.4	4.8	3.2	19.1	60.6	12.3	25.5	42.5
14	4200-4410	CT	1.20	626	3.8	4.8	2.4	9.4	75.3	8.1	45.1	52.2
15	4410-4720	CT	0.95	553	9.8	12.2	4.6	19.0	59.0	5.2	92.9	58.2
16	4720-4890	CT	0.80	628	9.5	8.6	3.5	13.9	54.1	19.9	76.0	78.5
17	4890-5115	CT	0.85	545	11.3	12.8	4.8	18.9	62.6	0.9	95.9	64.1
18	5115-5410	CT	0.75	667	13.7	9.7	5.7	13.3	59.5	11.8	102.7	88.9
19	5410-5570	CT	1.25	855	10.3	9.4	5.6	17.0	53.8	14.2	128.3	68.4
20	5570-5636	CT	3.75	4699	10.8	4.7	3.9	5.5	82.4	3.5	404.1	125.3
21	5636-5848	CT	1.05	1229	15.0	7.4	5.4	0.2	76.2	10.8	157.2	117.0
22	5848-6100	CT	1.30	755	11.1	11.1	8.0	18.9	46.5	15.5	144.0	58.0
23	6100-6440	CT	12.90	3908	3.8	5.9	6.5	10.3	77.1	0.2	484.7	30.3
24	6440-6590	CT	19.20	5285	2.6	3.6	5.7	8.5	75.9	6.3	491.0	27.5
25	6590-6800	CT	26.30	6593	2.1	3.4	4.9	4.3	84.5	2.9	547.9	25.1
26	6800-6830	CT	22.50	9130	2.8	3.1	3.9	4.6	84.6	3.8	639.5	40.6
27	6830-6910	CT	8.40	3172	5.4	9.6	4.7	7.8	71.2	6.7	454.1	37.8
28	6910-6970	CT	20.80	8029	1.4	1.6	1.9	2.7	86.6	7.2	281.0	38.6
29	6970-7085	CT	8.30	2859	2.2	3.3	3.1	2.7	83.7	7.2	182.7	34.4

WELL: INGELLA #1

No.	INTERVAL	SAMPLE TYPE	TOC (wt%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT 	AROM	ONS -(w+%)	ASHP	LOC	HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
1	2900-3180	CT	3.30	1680	3.3	3.2	3.2	9.8	72.6	11.2	107.5	50.9
2	3180-3360	CT	2.65	1580	6.1	4.5	5.7	28.1	57.2	4.5	161.1	59.6
3	3360-3720	CT	2.90	1586	4.3	3.8	4.0	11.0	59.5	21.7	123.7	54.7
4	3720-4020	CT	1.25	875	11.1	10.0	5.9	18.3	57.8	8.0	139.1	70.0
5	4020-4269	CT	1.40	973	7.3	6.1	4.4	14.0	61.2	14.3	102.2	69,5
6	4264-4355	CT.	6.65	6020	8.6	6.1	3.4	9.5	79.8	1.2	571.7	90.5
7	4355-4650	CT	1.80	1316	15.1	12.5	8.1	25.9	40.5	13.0	271.1	73.1
8	4650-4950	CT	1.00	644	9.4	8.4	5.7	19.6	48.9	13.4	93.6	66.4
9	4950-5190	CT	1.25	640	7.5	9.1	5.6	13.9	59.7	11.7	94.1	51.2
10	5190-5450	CT	1.00	781	15.4	12.6	7.1	19.5	52.9	7.9	153.9	78.1
11	5450-5740	CT	1.70	3116	19.9	6.7	4.2	3.5	83.5	2.1	339.1	183.0
12	5750-5900	CT	1.05	2102	7.8	2.0	1.9	3.4	88.9	3.8	81.9	200.0
13	5900-6200	CT	0.50	697	13.5	6.6	3.1	9.3	70.1	10.9	67.4	139.0
14	6200-6280	CT	0.45	862	25.2	7.7	5.5	13.0	67.7	6.1	113.5	191.0
15	6280-6350	C.T	0.15	417	42.5	10.3	5.0	13.8	51.8	19.1	63.8	278.0
16	6350-6650	CT	4.40	7194	24.3	9.0	5.9	7.5	77.4	0.2	1068.6	163.0
17	6650-6950	CT	0.40	762	17.5	6.7	2.5	11.1	65.5	14.2	69.9	190.0
18	6950-7250	CT	0.50	916	14.1	5.1	2.6	8.8	69.8	13.7	70.5	183.0
19	7250-7300	CT	1.55	3182	6.8	1.5	1.8	3.5	91.7	1.5	104.9	205.0
20	7600-7800	CT	0.60	986	16.2	5.0	4.9	13.3	66.9	9.9	97.4	164.0
21	7800-8008	CT	0.60	500	15.8	15.5	3.5	17.4	47.1	16.5	95.1	83.4
22	8008-8300	CT	0.50	488	12.8	8.5	4.6	18.7	53.1	15.1	63.9	97.6
23	8600-8855	CT	0.40	403	9.0	6.8	2.1	19.2	56.2	15.7	36.0	101.0
24	8600-8855	CT	0.35	364	58.0	45.9	9.9	3.0	0.0	20.1	203.1	104.0

WELL: INNAMINCKA #3

No.	INTERVAL (ft)	SAMPLE TYPE	TOC (wt%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT	AROM	ONS -(wt%)	ASHP		HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~											
1	4134	SWC	0.86	1300	49.0	27.0	5.3	32.8	34.9	†		
2	4842	SWC	1.55	2905	42.0	16.4	6.0	22.4	55.2	-	ata from	
3	5568	SWC	1.14	1068	25.0	19.9	6.8	28.1	45.2	† Mo	cKirdy 1982	
4	5691	SWC	9.64	3182	3.0	4.7	4.7	22.4	58.2	†		
5	86641611-811	С	0.15									
6	868014"-6"	С	0.12									
7	89921811-911	С	0.12									
8	901014"-6"	С	0.17									
9	93241311-411	С	0.01									
10	933718"-9"	С	0.04									

WELL: JACK LAKE #1

No.	INTERVAL (ft)	SAMPLE TYPE	TOC (w†%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT 	AROM	ONS -(w†%)	ASHP	LOC	HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
1	3300-3600	CT	2.42	907	3.3	5.2	3.6	26.2	42.8	22.2	79.9	37.5
2	3600-3900	CT	1.00	644	5.7	6.9	2.0	24.1	48.4	18.7	57.3	64.4
3	3900-4200	CT	1.12	669	4.5	5.3	2.3	35.7	37.4	19.4	50.8	59.7
4	4200-4500	CT	1.20	913	7.5	6.5	3.4	32.0	40.9	17.3	90.4	76.1
5	4500-4800	CT	0.86	582	6.4	5.8	3.6	17.0	54.5	19.2	54.7	67.7
6	4800-4950	CT	1.16	638	5.6	6.4	3.8	21.5	53.5	14.7	65.1	55.0
7	5100-5400	CT	1.18	702	8.0	10.1	3.4	18.5	56.4	11.6	94.8	59.5
8	5400-5700	CT	1.16	1155	7.3	5.3	2.0	10.7	63.1	18.9	84.3	99.6
9	5700-6000	CT	0.33	1136	36.1	8.6	1.9	12.1	51.5	25.9	119.3	344.2
10	6000-6300	CT	0.12	322	37.0	10.5	3.3	14.2	47.7	24.3	44.4	268.3
11	6300-6600	CT	0.05	206	81.6	13.2	6.6	15.4	52.2	12.6	40.8	412.0
12	6600-6900	CT	0.47	299	6.6	8.8	1.6	16.1	55.4	18.1	31.1	63.6
13	6900-7200	CT	0.07	. 347	57.0	9.5	2.0	8.7	57.9	21.8	39.9	495.7
14	7200-7500	CT	0.10	37 7	26.4	5.5	1.5	8.1	65.7	19.2	26.4	377.0
15	7500-7800	CT	52.60	45789	3.0	1.5	1.9	3.7	91.3	1.6	1557.7	87.1
16	8100-8400	CT	1.22	1593	7.7	2.6	3.3	7.4	76.4	10.4	94.0	130.6
17	8400-8560	CT	45.50	36256	4.9	2.7	3.4	7.2	85.5	1.3	2212.1	79.7
18	8560-8890	CT	32.90	25138	· 5.3	3.2	3.7		A84.5	1.2	1734.4	76.4
19	8890-9090	CT	52.30	21466	1.4	1.6	1.7	2.7	90.8	3.2	707.6	41.0
20	9090-9390	CT	31.30	9443	2.4	4.2	3.9	3.9	82.2	5.8	765.7	30.2
21	9390-9690	CT	51.20	9574	0.5	1.3	1.5	2.7	92.0	2.5	268.1	18.7
22	9690-9860	CT	44.40	13535	4.3	7.7	6.3	6.6	77.4	2.0	1895.9	30.5
23	9870-10050	CT	12.40	9410	16.8	15.5	6.6	23.3	49.3	5.3	2080.0	75.9
24	10060-10270	CT	30.20	18107	4.7	3.8	4.1	7.4	76.0	8.7	1431.5	60.0
25 ·	10280-10320	CT	44.60	22467	8.3	7.5	8.9	22.4	57.0	4.3	3686.5	50.4

WELL: JACKSON #1

No.	INTERVAL (ft)	SAMPLE TYPE	TOC (wt%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT	AROM	ONS -(w+%)	ASHP	LOC	HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
1	1200-1500	СТ	2.50	1188	2.8	3.4	2.6	17.2	61.0	15.8	71.3	47.5
2	1500-1800	CT	1.20	727	5.6	7.6	1.7	19.9	58.1	12.7	67.6	60.6
3	1800-2100	CT	1.30	582	2.2	4.6	0.4	14.2	72.3	8.5	29.1	44.7
4	2100-2400	CT	1.35	582	3.7	3.4	5.1	34.4	56.3	0.8	49.5	43.1
5	2400-2700	CT	1.35	777	5.0	4.5	4.2	19.4	58.4	13.5	67.7	57.6
6	2700-3000	CT	1.05	396	2.8	4.0	3.4	23.8	52.3	16.5	29.3	37.7
7	3300-3400	CT	1.20	471	3.9	5.7	4.3	17.6	59.4	13.0	47.0	39.2
8	3340-3600	CT	0.70	495	27.3	33.5	5.1	32.0	23.5	5.9	191.3	70.8
9	3600-3650	CT	1.05	572	6.0	7.4	3.7	11.7	72.2	5.0	63.4	54.4
10	3650-3900	CT	0.85	666	10.0	12.1	0.7	13.0	62.1	12.1	85.2	78.3
11	370313"-6"	С	1.95	2411	39.1	22.3	9.2	20.1	41.6	6.8	761.7	124.0
12	3900-4200	CT	0.35	663	36.1	14.5	4.6	15.0	54.9	11.0	126.3	189.0
13	4176-4345	CT	0.35	2430	510.8	65.5	8.1	12.8	8.2	5.4		694.0
14	4345-4520	CT	0.70	2316	187.7	51.1	5.6	10.7	21.4	11.2	1313.7	331.0
15	438513"-6"	С	1.40	2059	73.5	41.2	8.8	18.5	28.9	2.6	1029.0	147.0
16	4400 11 1 - 2 11	С	2.90	5097	41.7	20.0	3 .7	9.8	55.9	10.6	1209.6	176.0
17	4520-4680	CT	0.55	1138	81.8	31.1	8.4	12.2	47.4	0.9	449.7	207.0
18	4680-4710	CT	0.70	1459	54.3	19.8	6.3	14.7	45.1	14.1	380.0	208.0
19	4710-4860	CT	0.50	955	65.3	26.7	7.5	16.4	44.4	5.0	326.6	191.0
20	4860-4916	CT	0.45	854	40.1	16.2	4.9	8.8	66.0	4.1	180.4	190.0
21	4916-4962	CT	12.50	7563	3.4	2.1	3.5	5.6	83.8	5.0	423.5	60.5 74.1
22	4960-5000	CT	15.50	11493	1.2	0.7	0.9	2.3	88.5	7.7	183.8	80.7
23	4962-5026	CT	10.70	8633	4.4	2.3	3.2	4.8	89.1	0.6	474.9	62.5
24	5026-5118	CT	7.50	4684	3.9	3.3	3.0	4.9	88.7	0.1	295.3	
25	5118-5160	CT	20.30	15552	2.8	1.6	2.0	2.9	89.7	3.8	559.8	76.6
26	5160-5239	CT	11.00	4737	4.0	3.8	5.5	8.7	76.9	5.1	440.9	43.1 36.3
27	5239-5578	CT	19.10	6940	3.4	4.6	4.9	7.7	77.1	5.7	658.7	50 . 0
28	5578-5728	СТ	7.50	3753	4.3	4.0	4.7	5.1	80.7	5.5	326.3	50.0

WELL: JACKSON #2

No.	INTERVAL (ft)	SAMPLE TYPE	TOC (wt%)	EOM (ppm)	HC YEILD (mg/g TOC)				ASHP	LOC	HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
1 2	4720-4750 5010-5040	CT CT	1.55 9.65	1720 6866	29.5 0.6		7.0 0.4	24.1 1.7	38.6 97.2	10.7 0.1	457.7 61.8	111.0 71.2
WEL	L: JACK 5SON	SOUTH #	<u>!</u>									
No.	INTERVAL (ft)	SAMPLE TYPE	TOC (w+%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT			ASHP		HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
1	3000-3270	CT	1.39	1026	7.3	4.5		18.1	51.2		101.6	73.8
2	3280-3490	CT	1.03	884	17.0	16.8	3.0	14.3	62.4		175.0	85 . 8
3	3500-3730	CT	0.78	883	32.6	19.3	9.5	22.5	41.6	7.1	254.3	113.2
4	3740-4110	CT	0.72	1107	28.3	11.1	7.3	17.9	54.0	9.6	203.8	153.8
5	4120-4380	CT	0.76	1122	42.7	24.2	4.7	12.4	50.0	8.6	324.2	147.6
6	4380-4490	CT	0.88	2537	34.0	9.8	2.0	12.4	61.7	14.1	299.4	288.3
7	4490-4650	CT	4.40	7789	24.1	6.7	6.9	11.7	62.9	11.8	1059.2	177.0
8	4650-4890	CT	1.85	4197	52.6	16.6	6.6	13.2	60.0		973.9	226.9
9	4890-5050	CT	6.55	5179	9.7	5.1	7.2	13.6	61.7	12.3	637.3	79.1
10	5050-5180	CT	21.30	10782	8.2	7.5		16.1	59.6	8.1	1756.8	50.6
11	5190-5480	CT	30.00	7307	4.1	10.4	6.3	24.0	56.3		1222.4	24.4
12	5490-5780	CT	6.45	2851	6.5	8.5		19.1	60.3		419.1	44.2
13	5790-5870	CT	2.16	1584	8.7	6.3	5.6	18.5	57.5	12.1	188.4	73.3

WELL: KARMONA #1

No.	INTERVAL (ft)	SAMPLE TYPE	TOC (wt%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT	AROM		ASHP	LOC	HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
	, and		. .						70.0		•	
1	7519	C	6.90	12215	45.0	9.3 1			38.8			
2	7521		88.90	3111	1.0	6.5 2		56.8	11.3	**0~+~	from McKir	du 1082
3	7528	С	96.00	4319	2.0	11 . 5 2	2.0	45.0	20.9	~~Dala	IT OIL MCKIT	uy 1902
WELL	.: KARMONA E	AST #1										
No.	INTERVAL	SAMPLE	TOC	EOM	HC YEILD	SAT		ONS		LOC	HC TOTAL	EOM(per TOC)
	(ft)	TYPE	(wt%)	(ppm)	(mg/g TOC)			-(wt%)			(ppm)	(mg/g TOC)
1	4200-4490	CT	1.30	799	4.9	4.9	3.0	15.8	62.2	14.1	63.2	61.5
2	4490-4790	CT	0.97	658	10.0	9.4	5.3	18.0	67.1	0.2	96.7	67.8
3	4790-5000	CT	0.63	1528	66.0	20.8	6.4	13.5	55.6	3.7	415.5	242.5
4	5000-5300	CT	0.41	909	23.7	6.2	4.5	12.4	70.6	6.3	97.3	221.7
5	5300-5500	CT	0.53	914	23.5	9.4	4.2	12.9	65.2	8.3	124.3	172.5
6	5500-5740	CT	0.64	1245	29.8	8.6	6.7	13.6	64.7	6.4	190.5	194.5
7	5740-5950	CT	2.62	5036	32.5	9.3	7.6	9.8	70.1	3.3	851.0	192.2
8	5950-6250	CT	0.60	1427	22.6	4.1	5.4	11.6	74.7	4.2	135.5	237.8
9	6250-6340	CT	0.86	1962	16.9	3.0	4.4	10.2	79.6	2.7	145.2	228.1
10	6340-6440	CT	2.66	5555	4.8	0.8	1.5	2.3	93.2		127.7	208.8
11	6440-6740	CT	0.76	1553	21.7	4.6	6.0	12.2/	73.7	3.5	164.6	204.3
12	6740-7040	CT	0.97	1595	18.6	6.3	5.0	14.0	73.7	1.1	180.2	164.4
13	7160-7460	CT	23.50	11029	1.5	3.1	0.0	3.0	75.4	6.6	341.7	46.9
14	7400-7420	CT	17.26									
15	7530-7830	CT	6.45	3549	6.5	5.9	5.9	7.3			418.6	55.0
16	7840-8140	CT	1.53		9.1	5.7	4.5	9.8	77.6	2.4	139.0	89.1
17	7515'3"	C	4.10									

WELL: KIDMAN #2

No.	INTERVAL	SAMPLE TYPE	TOC (w†%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT	AROM	ONS -(w+%)	ASHP	LOC	HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
1	3400	SWC	0.62	395	11.0	14.3	2.6		55.8			
2	3538	SWC	0.94	581	11.0	14.0	4.3	32.2	49.5			
3	3646	SWC	0.12	439	44.0	7.1	4.8	38.1	50.0			
4	4210	SWC	0.95	1650	50.0	20.9	7.7	45.0	26.4			
5	4460	SWC	1.22	843	20.0	20.0	8.6	32.8	38.6		•	
6	4532	SWC	0.16									
7	4670	SWC	0.36	465	24.0	10.6	7.6	48.5	33.3			
8	4778	SWC	0.47	510	7.0	4.8	1.6	33.3	60.3			
9	4863	SWC	0.88	1580	58.0	25.2	7.4	48.2	25.2			
10	5030	SWC	2.08	3012	31.0	16.6	4.6	22.8	56.0			
11	5170	SWC	0.91	1022	22.0	13.5	6.4	20.5	59.6			
12	5310	SWC	0.77	1255	43.0	18.4	7.8	28.2	45.6			
13	5508	SWC	1.57	1456	15.0	12.0	4.4	. 38.7	44.9			
14	5679	SWC	1.72	3548	39.0	12.9	5.9	34.8	46.4	•		
15	5755	SWC	0.76	2155	80.0	23.8	4.4	16.6	55.2			
16	5930	SWC	1.33	1277	14.0	10.1	4.0	21.3	46.4			
17	6092	SWC	0.16									
18	6284	SWC	0.11	•								
19	6412	SWC	0.72	671	9.0	8.0	2.0	36.0	54.0			
20	6502	SWC	1.25	792	18.0	20.3		25.4	45.8			
21	6784	SWC	2.88	2611	10.0	8.3	2.6	37.3	51.8		•	
22	6814	SWC	2.22	1045	9.0	13.0	5.2	50.5	31.2			
23	6846	SWC	2.62									
24	6900	SWC	3.58	1516	6.0	10.8	3.8	49.2	36.2			
25	7120	SWC	3.04	1042	10.0		7.1	22.2	49.5			
26	7207	SWC	1.34								:	
27	7328	SWC	1.98	868	6.0	13.2	<2.5	18.5	65.8			
28	7350	SWC	0.11	•	-							
29	7374	SWC	0.13	**Data	from McKird	ly 198	2					

WELL: KUNCHERINNA #1

No.	INTERVAL	SAMPLE TYPE	TOC (w†%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT	AROM	ONS -(w+%)	ASHP	LOC	HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
						- ^		10.5	77 6	10.0	71.2	66.5
1	2520-2820	CT	2.10	1396	3.4	3.0	2.1	10.5	73.5	10.9	105.6	75 . 4
2	2820-3120	CT	1.75	1320	6.0	3.9	4.1	14.5	63.2	14.3	63.5	68 . 7
3	3120-3420	CT	1.10	756	5.8	4.9	3.5	19.2	52.5	19.9	91.0	66.7
4	3420-3720	CT	1.10	733	8.3	9.7	2.7	16.5	53.6	17.5	11.8	85.8
5	3720-4020	CT	1.15	987	1.0	1.1	0.1	3.3	89.3	6.2		101.0
6	4020-4320	CT	2.10	2118	7.5	4.3	3.1	12.4	73.7	6.5	157.0	
7	4320-4620	CT	1.60	1226	8.4	6.0	4.9	18.6	55.0	15.5	133.6	76.6
8	4620-4920	CT	1.00	545	6.1	6.5	4.6	21.2	53.0	14.7	60.5	54.5
9	4920-5110	CT	1.25	1041	8.4	5.5	4.6	16.0	50.0	23.8	105.0	83.2
10	5110-5240	CT	1.05	820	10.6	8.2	5.4	13.9	51.8	20.7	111.5	78.1
11	5240-5540	CT	0.15	519	27.7	6.7	1.3	19.3	50.7	22.0	41.5	346.0
12	5540-5840	CT	0.25	1296	158.8	25.7	4.9	10.2	41.1	18.1	397.0	519.0
13	5840-6120	CT	<0.05	225	44.5	9.4	0.5	7.9	58.6	23.6	22.2	<449.0
14	6120-6420	CT	0.65	1735	30.4	5.4	6.0	8.7	62.6	17.3	197.9	267.0
15	6420-6720	CT	0.20	736	17.7	2.9	1.9	9.1	70.6	15.5	35.3	368.0
16	6720-7020	CT	0.05	333	26.0	3.2	0.7	8.7	82.3	5.1	13.0	666.0
17	7020-7320	CT	0.15	401	28.0	6.7	3.8	9.8	71.9	7.8	42.1	267.0
18	7320-7620	CT	0.10	376	28.2	5.3	2.2	8.1	69.5	14.9	28.2	376.0
19	7620-7770	CT	6.75	13384	5.0	1.4	1.1	2.5	91.2	4.3	334.1	198.0
20	7750-7790	CT	0.95	1228	9.4	3.5	3.8	14.6	60.4	17.7	89.7	129.3
21	7770-8060	CT	1.15	3212	4.7	0.8	0.9	2.4	94.6	1.3	55.0	279.0
22	7840-7880	CT	2.90	2258	8.1	5.9	4.5	12.2	66.0	11.4	234.9	77.9
23	8070-8110	CT	0.82	1177	12.6	6.5	2.3	16.2	60.1	14.8	103.5	143.5
24	8060-8340	CT	1.25	2641	19.2	5.5	3.6	11.5	65.1	14.3	240.0	211.0
25	8190-8230	CT	0.94	869	10.8	8.5	3.2	16.5	55.9	15.9	101.6	92.4
26	8230-8270	CT	1.62	1599	8.6	5.9	2.8	15.5	54.7	21.2	139.1	98.7
27	8340-8410	CT	0.70	3651	20.4	2.0	1.9	4.9	88.2	3.0	142.5	522.0
28	8400-8440	CT	3.12	1334	3.1	3.7	3.6	17.3	57.9	17.5	97.5	42.8
29	8410-8710	CT	3.40	4356	2.2	0.9	0.8	1.7	95.2	1.4	74.0	128.0
30	8440-8480	CT	1.22	862	5.6	5.0	2.9	14.5	60.0	17.6	68.1	70.7
31	8480-8520	CT	7.40	6342	10.2	8.5	3.4	21.9	44.2	21.9	754.7	85.7
32	8520-8560		2.94	2118	6.3	5.3	3.5	12.2	62.0	17.0	186.3	72.0
33	8710-8930		2.45	2662	5.0	2.4	2.2	5.6	86.5	3.3	122.8	109.0
34	8930-9170		2.15	3457	8.4	3.1	2.1	4.5	81.8	8.5	180.0	161.0
	9170-9320		0.30	325	8.3	5.6		12.7	68.3	11.3	25.0	108.0
35 36	9320-9393		0.20	644	35.4	9.8	1.2	11.5	53.4	24.1	70.8	322.0
36	ソンZUーソンソン	UI	V. 4U	044	シン・マ	,						

WELL: MACUMBA #1

No.	INTERVAL	SAMPLE TYPE	TOC (w†%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT AROM		ASHP	LOC	HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
1 2	7713 7720	C C	3.20 3.15	1158 1340	8.0 12.0	7.0 15.6 9.4 17.4	32.3 32.2	45.1 40.6	**Da†a	from McKi	rdy 1981
WELL:	: MARABOOKA	#1									
No.	INTERVAL (ft)	SAMPLE TYPE	TOC (w†%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT ARON	1 ONS (wt%		LOC	HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
1	3334	SWC	0.80	677	14.0	11.8 4.6			0011	T 4 4 4 4 4 4 T T T	ACCEL DECLA
2	3422	SWC	0.10	324	49.0	8.4 6.7	55.5		CON	IAMINATED	(SEEL-PEEL)
3	3430	SWC	0.25	345	17.0	8.1 4.0					
4	4644	SWC	0.65	1021	38.0	17.2 5.2					
5	475918"	C	1.90	1885	28.0	20.2 7.9					
6	479215"	С	2.65	3318	31.0	13.6 11.2					
7	4839 ! 4"	С	3.20	3130	27.0	15.7 12.2			CTA	LNED	
8	5658	SWC	<0.05	213	59.0	7.5 6.3				INED	
9	646516"	С	1.00	966	7.0	3.1 4.2					
10	6549	SWC	2.10	1495	17.0	15.1 7.0				TAMINATED	(SEEL-PEEL)
11	6918	SWC	<0.05	368	207.0	19.3 8.8	24.5	47.4	CON	INMINAICD	(JEEE-1 EEE/
1				1							

^{**}Data from McKirdy 1981

WELL: McKINLAY #1

No.	INTERVAL (ft)	SAMPLE TYPE	TOC (w†%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT	AROM	ONS -(w†%)	ASHP	LOC	HC TOTAL (ppm)	EOM(per TOC (mg/g TOC)
	(11)											
	0400 0700	OT	1 70	67 6	4.4	8.5	2.2	41.5	36.4	11.4	57.3	41.2
	2400-2700	CT	1.30	536	8.1	7.5	7.8	31.2	39.7	13.8	89.5	53.2
2	2700-2821	CT	1.10	585		7.5	4.5	37.6	33.3	17.1	56.2	49.3
3	2821-2930	CT	0.95	469	5.9			29.8	46.4	10.1	120.2	65.0
4	2930-3000	CT	1.35	877	8.9	9.5	4.2			13.6	80.0	49.4
5	3000-3300	CT	1.00	494	8.0	11.8	4.4	21.3	48.9		72.9	66.1
6	3300-3600	CT	0.75	496	9.7	6.3	8.4	16.7	51.5	17.1		56.0
7	3600-3650	CT	0.90	504	6.8	7.7	4.4	23.5	54.8	9.5	61.0	
8	3650-3855	CT	1.00	639	8.4	9.0	4.1	19.9	53.2	13.8	83.7	63.9
9	3855-4007	CT	0.80	533	9.6	9.8	4.6	17.2	63.2	5.2	76.7	66.6
10	4007-4200	CT	1.30	1310	17.2	14.2	2.9	14.2	53.1	15.6	223.9	100.7
11	4200-4500	CT	1.10	1273	11.6	6.1	3.9	13.1	70.7	6.2	127.3	115.7
12	4500-4649	CT	0.75	1203	27.3	11.9	5.1	12.9	57.6	12.5	204.5	160.4
13	4649-4699	CT	1.85	2892	24.4	9.6	6.0	11.6	72.4	0.4	451.1	156.3
		CT	3.50	1607	4.9	7.5	3.2	27.0	48.0	14.3	171.9	45.9
14	4699-4997			559	13.5	16.7	5.1	20.3	54.7	3.2	128.4	62.0
15	4997-5130	CT	0.95	229	10.0	10.7	7. •	2000				

WELL: MERRIMELIA #6

No.	INTERVAL (ft)	SAMPLE TYPE	TOC (wt%)	EOM (ppm)	HC YEILD (mg/g TOC)		AROM	ONS -(w†%)	ASHP	LOC	HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
											00.0	77 7
1	1500-1800	CT	0.90	300	3.2	4.0	5.6	26.7	44.6	19.1	28.8	33.3
2	1800-2100	CT	1.40	528	3.4	3.9	5.2	25.6	46.5	18.8	48.0	37.7
3	2100-2400	CT	1.55	602	3.5	2.5	6.5	25.9	41.7	23.4	54.1	38.8
4	2400-2700	CT	1.45	477	3.8	10.1	1.5	31.7	48.1	8.6	55.3	32 . 9
5	2700-3000	CT	3.45	1751	4.5	5.3	3.5	19.3	53.9	18.0	154.2	50.8
6	3000-3300	CT	2.85	1782	6.3	5.1	5.0	19.7	58.3	11.9	179.9	62.5
7	3300-3600	CT	3.00	1614	4.6	4.6	3.9	20.9	59.0	11.0	137.2	53.8
8	3600-3900	CT	1.90	1031	6.4	5.7	6.1	24.1	47.3	16.8	121.7	54.3
9	3900-4200	CT	1.20	662	5.6	3.9	6.3	25.3	42.9	21.6	67.6	55 . 2
10	4200-4500	CT	1.05	586	5.6	5.2	4.8	29.7	44.0	16.3	58.6	55 . 8
11	4500-4840	CT	1.20	629	5.7	6.9	3.9	20.0	62.8	6.4	67.9	52.4
12	4850-5100	CT ⁻	1.35	773	13.6	16.4	7.4	17.0	54.8	4.4	184.1	57.3
13	5100-5150	CT	0.80	1093	49.7	27.6	8.8	20.8	34.7	8.1	397.8	136.6
14	5320-5620	CT	0.70	860	72.5		23.7	8.0	74.2	16.2	507.6	122.9
15	5620-5920	CT	1.05	1754	50.1	19.6	10.4	12.6	48.1	9.3	526.0	167.0
16	5920-6220	CT	2.60	3943	21.7	7.1	7.2	7.3	71.4	7.0	564.0	151.7
17	6220-6520	CT	0.50	889	40.2		12.8	11.7	59.0	6.7	200.9	177.8
18	6520-6720	CT	0.70	822	30.5	9.2	8.0	13.6	49.5	19.7	213.6	177.4
19	6720-6920	CT	8.25	4075	0.7	0.5	1.0	1.4	93.5	3.6	61.1	49.4
20	6920-7220	CT	0.70	839	21.5	10.8	7.1	15.1	49.5	17.5	150.2	119.9
21	7220-7320	CT	0.80	992	18.7	8.8	6.3	12.9	54.1	17.9	149.8	124.0
22	7320-7442	СТ	0.95	721	13.9	8.0	10.3	18.7	50.4	12.6	132.0	75.9

WELL: MERRIMELIA #7

No •	INTERVAL (ft)	SAMPLE TYPE	TOC (w†%)	EOM (ppm)	HC YEILD (mg/g TOC)		AROM	ONS -(w†%)		LOC	HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15							4.9 3.8 5.3 2.7 5.3 4.8 7.2 6.5 4.7 7.0 7.5	20.9 16.8 23.1 22.7 24.2 21.6 22.7 17.1 23.1 16.6 9.0 9.1 3.6 12.3	52.7 70.0 60.1 45.6 48.0 42.7 44.2 50.0 61.8 36.4 29.2 53.2 65.8 86.5 66.5	15.8 3.8 3.5 22.3 4.9 20.0 12.0 17.0 2.6 9.7 6.2 9.1 10.8 2.4 2.4	(ppm) 156.1 166.7 111.5 77.0 122.0 95.0 115.7 98.4 93.2 272.4 71.7 37.4 19.8 36.6 212.7	(mg/g TOC) 58.9 80.6 59.9 56.5 65.2 50.4 57.7 61.9 48.1 76.9 16.6 21.7 17.3 18.4 94.3
16 17 18 19 20 21 22	6250-6550 6550-6780 6780-6940 6940-7200 7200-7280 7280-7350 7350-7452	CT CT CT CT CT CT	0.35 0.70 11.70 1.70 1.45 0.80 4.65	429 947 5400 1032 1239 1046 3416	1.8 1.9 11.5 11.3 29.0 1.5	7.8 6.8 11.5 11.5 23.8 7.9 8.6	13.3 7.1 10.2 3.6	15.6 14.1 18.0 13.4 13.2 7.0 7.3	63.3 67.9 51.8 48.3 47.0 73.6 69.2	6.8 4.2 5.4 19.7 5.8 7.9 8.4	6.2 13.0 1340.5 191.9 421.0 12.1 516.1	12.3 13.5 46.2 60.7 85.4 13.1 73.5

WELL: MOKARI #1

No .	INTERVAL (ft)	SAMPLE TYPE	TOC (w+%)	EOM (ppm)	HC YEILD (mg/g TOC)		AROM		ASHP		HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
1	5786	С	1.17	1090	28.0	6.8	23.0	13.7	56.5			
2	5794	Č	0.93	890	13.0		8.4		79.5			
3	5797	Č	0.14									
4	6070	Ċ	0.14									
5	6071	Ċ	2.37	1111	7.0	5.0	10.6	17.5	66.9			
6	6074	C	11.40	3657	9.0	7.8	21.3	29.3	41.6			
7	6080	С	0.34								•	
8	6085	С	1.49	1100	15.0	7.2	12.4	17.5	62.9			
9	6543	С	0.75	978	32.0	12.1	12.3	20.6	55.0			
10	6552	С	0.94									
11	6553	С	9.01	7099	33.0	22.8	18.9	25.2	33.1			•
12	6616	С	0.95	888	34.0		22.5	13.2	50.1			
13	6618	С	3.61	2421	20.0		17.4		43.7	-		
14	6620	С	1.19	1496	28.0	3.8	19.9	25.8	50.5			
15	6624	С	0.48									
16	7821	С	0.03	26	65.0			28	6.6	BMR	DATA	
17	7824	С	0.02	**Data	from McKir	dy 198	31					
WELL:	: MOOMBA #1	8										
No.	INTERVAL	SAMPLE	TOC	EOM	HC YEILD	SAT	AROM	ONS	ASHP	LOC	HC TOTAL	EOM(per TOC)
110	(ft)		(wt%)	(ppm)	(mg/g TOC)						(ppm)	(mg/g TOC)
1	5703	С	0.62	370	15.0	17.1	7.7	39.3	35.9			
2	5796	Č	1.01	772	19.0	19.3	6.1		32.7			
3	5804	Č	0.79	586	14.0				-	**Data	from McKir	dv 1981
_	2004	•	V. 17	200	, 4, 0		J			u		-,

	v.		
- 2		1	
٠.	. 51	- /	

WELL: MOOROWIE #1

No.	INTERVAL (ft)	SAMPLE TYPE	TOC (w+%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT)	AROM	1 ONS (w+%)	ASHP		HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
1	5310-5330	СТ	0.29	432	74.5	41.6	8.4	40.7	9.3	0.0	216.1	149.0
NEL	L: MOORARI	<u>#3</u>										
No .	INTERVAL (ft)	SAMPLE TYPE	TOC (w†%)	EOM (ppm)	HC YEILD (mg/g TOC)			1 ONS (w+%)			HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
						40.7		7 4	75 5	41.0	170 4	157 4
1	5978	SWC	0.75	1184	23.9	10.7		7.4			179.4	157.4 202.0
2	6024	SWC	0.40	809	17.8	8.2		5.0	37.7	48.5	71.1	
3	6094	SWC	0.90	1017	12.3	9.3		6.7	52.1	30.3	110.9 325.9	113.0 445.2
4	6390	SWC	0.40	1781	81.5	14.6		10.0	40.2	31.5	357.8	106.5
5	6550	SWC	1.60	1705	22.4	14.8		10.5	58.2	10.3	405.5	204.8
6	6750	SWC	1.20	2458	33.8	11.8 19.6		8.3 11.6	62 . 1 58 . 3	13.1 30.6	1705.7	284.0
7	7014	SWC	2.10	5965 4240	81.2 461.2	59.8		6.9	10.5	11.9	2997.6	652.3
8	7077	SWC	0.65 0.80	4240 1771	61.8		10.9	15.5	38.6	18.0	494.2	221.4
9	7190	SWC	1.90	7665	106.1	24.6			48.4	20.3	2015.8	403.4
10 11	7256 7587	SWC SWC	0.25	11	231.4	48.0			20.3	10.1	578.6	433.4
		SWC	0.25	2502	291.4	45.7			8.7	29.0	1311.3	556.1
2	8014	SWC	0.49	620	133.3	37.2		23.3	19.8	13.9	266.6	310.0
13 14	8310 8622	SWC	0.20	6583	495.9	59.7		7.9	8.6	15.7	4463.0	731.4

WELL: MORNEY #1

No.	INTERVAL (ft)	SAMPLE TYPE	TOC (wt%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT	AROM	ONS -(w+%)	ASHP	LOC	HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
1	800-1300	СТ	2.35	1904	14.4	11.1	6.7	39.0	35.4	7.8	338.8	81.0
2	1350-1850	CT	1.15	755	6.7	6.6	3.6	19.9	54.7	15.2	76.9	65.6
3	1850-2350	CT	0.90	886	13.5	11.9	1.8	11.6	49.3	25.4	121.5	98.5
4	2350-2850	CT	5.20	6208	14.8	7.3	5.1	19.7	61.7	6.2	769.9	119.4
5	2850-3210	CT	1.10	1009	17.1	13.6	5.0	22.9	58.5	0.0	187.6	91.7
6	3200-3500	CT	1.15	1083	14.3	10.5	4.7	22.1	53.0	9.7	164.7	94.2
7	3500-3800	CT	1.25	1731	13.3	4.9	4.7	6.4	77.3	6.7	166.2	138.5
8	3800-4100	CT	1.00	919	15.3	11.3	5.4	20.8	55.6	6.9	153.5	91.9
9	4100-4400	CT	3.10	3633	23.1	10.3	9.4	10.2	53.3	16.8	715.7	117.2
10	4400-4700	CT	1.65	3410	69.0	24.8	8.6	10.2	36.5	19.9	1139.1	206.7
11	4700-5000	CT	1.25	1910	13.1	5.8	2.8	10.8	52.7	27.9	164.3	152.8
12	5000-5300	CT	1.05	940	15.0	11.7	5.1	18.1	40.8	24.3	157.9	89.5
13	5300-5600	CT	1.85	3081	17.5	4.1	6.4	8.4	62.9	18.2	323.4	166.5
14	5600-5900	CT	2.95	2914	10.3	5.5	4.9	9.1	67.5	13.0	303.1	98.8
15	5900-6200	CT	2.25	2200	13.4	7.5	6.2	11.4	48.7	26.2	301.5	97.8
16	6200-6500	· CT	0.35	329	14.5	7.7	7.7	15.4	43.4	25.8	50.6	93.9
	·											

WELL: MOUNT HOWITT #1

No.	INTERVAL (ft)	SAMPLE TYPE	TOC (w†%)	EOM (ppm)	HC YEILD (mg/g TOC)			ASHP	LOC	HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)	_
1 2	4094 4659	C C	0.39 1.60	1200 4173		4.6 11.6						
3 4	5723 6918	C	0.27 3.31	143 432	4.0	1.3 27.1	19.7 5	51.9	**Data	from McKiro	ty 1982	

WELL: MUDERA #1

No •	INTERVAL (ft)	SAMPLE TYPE	TOC (wt%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT			ASHP)	LOC	HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
1 2 3 4 5 6 7 8	3518 3579'11" 4930'1" 4955'1" 4973 5810 5834 5868'2"	SWC SWC SWC SWC SWC SWC SWC	0.60 1.30 0.70 0.65 0.65 0.75 0.75	597 680 1181 910 7808 1558 1689 2036	34.9 4.1 26.0 22.7 925.0 21.8 36.9 31.3	24.3 3.9 11.2 10.8 75.5 9.8 15.5 20.8	10.8 3.9 4.2 5.4 1.5 0.7 0.9 6.9	35.1 6.8 17.1 14.9 3.1 19.3 13.4 28.5	26.1 62.1 48.6 50.5 2.9 45.9 46.6 42.7	3.7 23.3 18.9 18.9 17.0 24.3 23.6	209.5 53.0 182.0 147.4 6012.5 163.6 277.0 563.9	99.5 52.3 168.8 140.0 1201.3 207.7 225.2 113.1
WELL:	MUDLALEE	<u>#2</u>										
No.	INTERVAL (ft)	SAMPLE TYPE	TOC (w†%)	EOM (ppm)	HC YEILD (mg/g TOC)				ASHP		HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
1 2 3 4 5 6	3994 4222 4516 5322 5456 5736	SWC SWC SWC SWC SWC SWC	1.15 1.26 1.72 1.42 2.79 3.47	1242 924 2321 2740 2569 2030	36.0 26.0 70.0 84.0 92.0 9.0	23.7 23.4 36.9 25.9 14.1 4.2	12.7 14.8 17.8	25.8 27.8 22.7 30.4 29.9 40.6	40.5 36.1 25.6 25.9 40.1 43.5	**Data	from McKir	dy 1982

LLL	: MUNKARIE	<u>#1</u>										
lo.	INTERVAL	SAMPLE TYPE	TOC (w+%)	EOM (ppm)	HC YEILD (mg/g TOC)		AROM			LOC	HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
	(ft)		(WID) 	(ppiii)	(lig/g 100/							
1	1310-1340	CT	25.60	20709	29.0	28.3	7.1	38.2	26.4	STAI	NED	
2	1940-1970	CT	12.20	3733	3.0	5.1	4.4	62.6	27.8			
3	2120-2150	CT	6.85	1597	4.0	10.8	4.9	57.6	26.7			
4	2480-2510	CT	15.80	4545	4.0	9.8		45.4	40.9			
5	2660-2690	CT	6.05	1542	4.0	11.4		60.1	25.0	· v		
6	3020-3050	CT	6.10	1500	3.0	9.3	3.9	58.4	28.4			
7	3440-3470	CT	5.90	1698	5.0	12.2	3.9	60.4	23.7			
8	3560-3590	CT	3.75	1342	4.0	8.7		58.9	29.9			
9	3740-3770	CT	5.35	2211	4.0	6.8	3.1	48.7	41.4			
0	3920-3950	CT	4.10	1713	5.0	8.2	3.3	44.3	44.2			
1	4280-4310	CT	3.28	1370	5.0	9.4	3.9	40.5	46.2			
2	4400-4430	CT	3.12	746	4.0	11.3	4.3	46.9	37.5			
3	5180-5210	CT	3.04	312	2.0	12.4	4.7	32.9	50.0			
4	5600-5630	CT	1.66	3180	17.0	3.6	5.1	32.3	59.0			
5	5786	SWC	0.55	467	9.0	6.2	4.7	37.5	51.6			
6	5816	SWC	2.27	2493	18.0	6.1	10.3	37.2	46.4		•	
7	5900-5930	CT	5.80	3477	4.0	3.2	3.6	36.4	56.8			
8	5942	SWC	3.27	1120	9.0	7.9	18.3	44.5	29.3			
9	6140-6170	CT	9.30	6490	6.0	3.5	4.4	46.4	45.7			
20	6256	SWC	0.82	1488	7.0	1.0	3.1	28.2	67.7			
21	6260-6290	CT	21.30	6466	5.0	6.2	9.8	39.1	44.9			
22	6293	SWC	0.98	3355	32.0	2.9	6.4	28.1	62.6			
23	6322	SWC	0.91	1633	24.0	4.7	8.7	44.3	52.3			
4	6374	SWC	2.41	2340	26.0		17.8	27.7	46.0			
25	6374	SWC	3.39	2135	16.0		17.8	34.5	40.2			
26	6417	SWC	2:35	2010	17.0		13.3	37.6	41.9			
27	6440-6470	CT	3.50	2197	10.0	12.7		38.8	45.2			
: / 28	6510	SWC	2.20	845	11.0		24.4	38.4	33.7			
20 29	6726	SWC	1.44	1120	20.0		15.7	33.6	41.0			
50	6780	SWC	1.80	1015	15.0		18.8	32.9	40.9			
	6800-6830	CT	14.50	8030	14.0	12.9		45.7	28.9			
31	6830	SWC	4.58	1814	14.0		22.3	36.1	28.6			
32 33	6860-6890	CT	4.34	2501	7.0	9.1	3.3	36.8	50.8		•	

Munkarie 1 (Continued)

34	6950	SWC	2.82	1603	22.0	9.4 29.4	25.8	35.4	
35	7000	SWC	1.75	1089	19.0	10.0 20.0	25.3	44.7	
36	7070	SWC	2.57	1474	14.0	8.6 15.7	22.7	53.0	
37	7099	SWC	3.42	1542	20.0	13.7 30.0	30.9	25.4	
38	7100-7130	CT	2.70	1526	6.0	7.5 7.0	28.7	56.8	
39	7155	SWC	1.55	1712	32.0	12.3 16.5	27.4	33.8	
40	7155	SWC	1.22	812					
41	7158	SWC	0.98	691	23.0	13.8 18.5	30.8	36.9	
42	7310-7340	CT	5.60	3126	7.0	6.4 6.1	41.7	45.8	
43	7327	SWC	2.83	2310	23.0	11.9 16.4	31.4	40.3	
44	7395	SWC	11.80	7265	26.0	12.4 30.2	30.7	26.7	
45	7407	SWC	3.13	1416	14.0	7.7 23.8	30.0	38.5	
46	7407	SWC	12.00	3980	14.0	11.9 29.3	35.1	23.7	
47	7550 - 7580	CT	2.14	1515	9.0	6.5 5.9	38.0	49.6	
47	7670-7692	CT	0.39	135	10.0	24.4 3.7	43.8	28.1	**Data from McKirdy 1982

WELL: NACCOWLAH #1

No.	INTERVAL (ft)	SAMPLE TYPE	TOC (w†%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT	AROM	ONS -(wt%)	ASHP	LOC .	HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
1	4080	SWC	1.16	837	10.0	10.5	3.3	13.9	38.1	34.2	115.6	72.2
2	4416	SWC	0.85	2168	172.9	63.6	4.2	9.2	9.6	13.4	1469.6	255.0
3	4634	SWC	6.71	1233	27.1	7.8	7.8	20.0	46.7	17.7	1817.2	173.6
4	5178	SWC	1.81	1744	14.6	9.1	6.0	25.0	24.6	34.5	263.5 [.]	96.4
5	5348	SWC	2.19	2460	40.8	19.3	17.0	14.6	.47.8	1.3	892.8	112.3
6	5487	SWC	0.70	1076	33.0	14.8	6.7	19.5	41.6	17.4	231.3	153.7
7	5460-5500	CT	1.05	1568	19.1	9.4	3.4	17.7	65.1	4.4	200.7	149.3
8	5736	SWC	1.46	1925	25.2	16.8	2.3	14.1	51.2	15.6	367.5	131.8
9	5840	SWC	0.78	1093	42.7	23.7	6.8	25.4	32.2	11.9	333.3	140.1
10	5947	SWC	2.98	1741	11.1	14.1	4.9	27.4	38.0	15.6	330.7	58.4
11	5987	SWC	3.52	2603	7.9	7.4	3.3	19.1	44.9	25.3	278.3	73.9
12	6000-6050	CT	11.10	5016	9.5	14.0	7.1	18.6	57.1	3.1	1058.6	45.2
13	609111"-2"	С	4.26	2113	10.7	6.7	14.9	12.9	44.7	20.8	456.4	49.6
14	6110-6140	CT	15.40	4665	11.7	22.3	16.3	27.1	34.0	0.4	1801.2	30.3
15	612619"-10	C	7.54	2125	5.0	10.0	7.6	18.3	45.9	18.2	374.2	28.2
16	6305	SWC	10.55	5880	11.0	10.9	8.8	35.7	43.9	0.7	1157.6	55 . 7

WELL: NACCOWLAH SOUTH #1

No.	INTERVAL (ft)	SAMPLE TYPE	TOC (wt%)	EOM (ppm)	HC YEILD (mg/g TOC)				ASHP	LOC	HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
1	4410-4440	CT	0.89	726	18.0	16.7	5.3	33.9	44.1		159.8	81.6
2	4440-4470	CT	0.81	1324	87.6	45.3	8.3	25.0	21.3		709.9	163.5
3	5100-5130	CT	1.96	1064	11.3	15.1	5.8	37.3	41.8		222.4	54.3
4	5130-5160	CT	2.78	1064	7.0	12.1	6.1	40.5	41.3		193.8	38.3
5	5340-5370	CT	4.00	2401	8.6	6.8	7.5	25.6	60.1		343.2	60.0
6	5370-5400	CT	1.63	1247	14.2	9.8	8.8	28.0	53.4		231.9	76.5
7	5400-5430	CT	1.47	1187	18.2	14.3	8.2	31.9	45.7		266.9	80.7
8	5460-5490	CT	1.30	1156	17.9	11.5	8.6	22.6	57.4		232.3	88.9
9	5730-5760	CT	2.58	3216	16.5	6.2	7.0	9.3	77.5		424.7	124.7
10	5760-5790	CT	0.69	477	10.7	9.8	5.7	19.1	65.3		73.9	69.1
11	5790-5820	CT	0.96	1073	18.6	9.7	6.9	18.9	64.5		178.2	111.8
12	5820-5850	CT	2.18	2317	28.3	17.5	9.1	20.1	53.3		616.4	106.3
13	5940-5970	CT	18.50	8942	7.3	5.0	10.1	26.7	58.2		1349.3	48.3
14	6000-6030	CT	1.34	1432	19.5	12.9	5.3	16.4	65.4		260.7	106.9
15	6030-6060	CT	7.50	3587	3.0	2.6	3.6	11.1	82.7		222.3	47.8
16	6060-6090	СТ	2.18	1166	3.9	3.3	3.9	16.6	76.1		84.0	53.5
WELL	.: NAMUR #2											
NI.	INTERVAL	SAMPLE	TOC	EOM	HC YEILD	SAT	AROM	ONS	ASHP	LOC	HC TOTAL	EOM(per TOC)
No.	INTERVAL (ft)	TYPE	(w+%)	(ppm)	(mg/g TOC)						(ppm)	•
	و الله والله والله والله والله والله والله والله والله ويده و											
1	5407	С	1.52	1693	43.0	30.8						
2	5409	С	2.82	2758	45.0	34.6 1		34.3	19.5			
3	541216"	С	2.64	4373	81.0	36.9 1			22.4			
4	541916"	С	3.90	4528	39.0	23.4 1		35.7	30.8			
5	542118"	С	2.94	3296	54.0	35.5 1		34.0	18.1			
6	5424 311	С	4.68	5291	34.0	18.3 1	11.5	32.7	37.5	**Data	from McKir	dy 1981

WELL: NAPPACOONGIE #2

WELL	: NAPPACOUNI	GIE #Z										
No •	INTERVAL	SAMPLE TYPE	TOC (w†%)	EOM (ppm)	HC YEILD (mg/g TOC)						HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
1 2 3 4 5	3362 4075 4324 4359'8" 5367 6158	SWC C C	0.67 1.03 0.64 1.58 15.40 2.88	422 2009 669 2285 22945 1227	63.0 29.0 76.0 36.0	23.6 18.5 44.3 20.5	8.9 9.3 8.3 3.9	28.5 31.7		**Da†a	from McKir	dy 1981
WELL	: OODNADATT.	A #1										
No.	INTERVAL (ft)	SAMPLE TYPE	TOC (w†%)	EOM (ppm)	HC YEILD (mg/g TOC)					LOC		EOM(per TOC) (mg/g TOC)
1 2 3	397 '0"-3" 540 '0"-3" 920 '0"-3"	С	1.50 0.90 1.20		2.9 4.0 0.9	2.7	1.4	11.4	81.8		43.1 36.4 10.5	98.6
WELL	: OODNADATT	A BORE	<i>#</i> 1									
No.	INTERVAL (ft)	SAMPLE TYPE		EOM (ppm)	HC YEILD (mg/g TOC)							EOM(per TOC) (mg/g TOC)
1	250–263	СТ	2.82	692	1.6	5.9	0.8	18.0	55.9	19.5	46.3	24.5
WELL	: ORIENTOS	<u>#1</u>										
No.	INTERVAL (ft)	SAMPLE TYPE		EOM (ppm)	HC YEILD (mg/g TOC)					LOC		EOM(per TOC) (mg/g TOC)
1 2 3	4724 5197 5443		0.26 1.76 0.31	1623	13.0		5 	8	1.4 6.4 2.6		NED ta from Mck	Girdy 1982

WELL:	PACKSADDLE	#3
-------	------------	----

No.	INTERVAL (ft)	SAMPLE TYPE	TOC (w†%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT	ARO	M ONS	ASHP	LOC		EOM(per TOC) (mg/g TOC)
1	7237	С	0.31	121	16.0	8.2 3	32.8	36.0	23.0	**Data	from McKiro	dy 1982
WELL	: PANDO #1											
No.	INTERVAL (ft)	SAMPLE TYPE	TOC (w†%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT 	ARO	M ONS (w+%	ASHP 		HC TOTAL (ppm)	•
1 2 3 4 5	5553 5587 5588 5619 5629 5649	C C C C	4.27 1.78 3.76 2.17 2.25 3.29	1718 720 1098 1063 889 1124	3.0	16.5 3.6 20.6 2.7 3.0 5.5	4.4 3.0 3.4 3.4 3.9 6.0	23.0 39.7 36.8 39.7 39.9 36.1	56.1 53.7 39.2 54.2 53.2 0.51	**Da†a	from McKir	dy 1982
WELL No.	: PATCHAWAF INTERVAL (ft)	SAMPLE TYPE		EOM (ppm)	HC YEILD (mg/g TOC)	SAT	ARO	M ONS	ASHP	LOC	HC TOTAL	EOM(per TOC) (mg/g TOC)
1 2 3 4	570-590 590-600 630-640 670-690	CT CT CT CT	1.04 0.68 1.16 0.24	3355 1785 10506 1096	2.6 6.0 7.3 10.1	0.3 2.0 0.7 1.5	0.5 0.3 0.1 0.7	4.5 12.7 2.5 5.3	81.5 77.9 76.7 79.6	13.1 7.0 20.0 12.9	26.8 41.1 84.1 24.1	322.6 262.5 905.7 456.7

WELL: PINNA #1

No.	INTERVAL (ft)	SAMPLE TYPE	TOC (w †%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT	AROM	ONS -(w+%)	ASHP	LOC	HC TOTAL (ppm)	•
1 2 3 4 5 6 7	4260 4660 5105 5549 6230 6398 8158	SWC SWC SWC SWC SWC C SWC	1.45 1.16 0.84 0.12 2.78 2.74 3.60	2122 1021 2550 1240 5561 1952 6231	27.0 92.0 492.0 121.0 7.0	27.4 25.4 24.7 43.5 51.8 4.5 49.9	5.7 4.1 8.5	34.8 31.9 34.3 28.4 33.1	37.0 34.1 37.7 18.1 11.3 57.1 19.7	STAIN **Dat	ED a from McK	irdy 1982
WELL	: POOLOWANN	IA #1										
No.	INTERVAL (ft)	SAMPLE TYPE	TOC (w+%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT 	ARON	1 ONS (wt%)	ASHP)	LOC	HC TOTAL (ppm)	•
1 2 3 4 5 6 7 8 9 10 11 12	7754 7756 7835 7918-7928 7934 8020 8128-8138 8213 8428 8433 8436 8518-8528 8528-8538	C C SWC CT SWC CT SWC C C C	13.50 6.20 1.22 3.55 1.89 9.28 1.36 2.30 5.01 5.15 7.95 6.40 5.25	24310 11545 7460 4509 2537 5717 1761 5291 3333 3186 3960 3394 2147	33.0 31.0 157.0 38.0 59.0 22.0 42.0 58.0 14.0 23.0 20.0 17.0	5.0 20.6 9.8 28.7 16.7 17.8 13.8 17.6	12.1 11.7 5.1 19.8 15.2 16.8 14.9 11.5 9.0 19.9 26.1	23.5 28.3 27.8 33.6 6 30.7 39.9 7 17.8 37.0 21.7	46.0 42.6 22.5 6.5 36.6 34.8 7.2 44.7 22.9 35.4	BMR	DATA DATA	:Kirdy 1981

WELL: PURNI #1

No •	INTERVAL (ft)	SAMPLE TYPE	TOC (wt%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT AROM	ONS (w+%)-	ASHP		HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
						_					
1	4740	С	2.85	955	4.0	5.3 7.7	27.8	59.2			
2	4747	С	0.85					•			
3	4760	С	1.17	1044	14.0	3.5 12.3	28.1	56.1			
4	4765	С	0.17			44 4	06.7	FO 6			
5	4771	С	2.29	692	5.0	8.3 14.4	26.7	50.6			
6	5065	C	0.06				7.6 0	50 0			
7	5075	С	0.77	647	9.0	8.7 1.6	36.8	52.9			
8	5082	C	0.46				40.0	F0 7			
9	5086	С	1.56	1331	8.0	4.0 5.0					
10	5088	С	0.49	1145	35.0	4.5 11.1		61.7			
11	5254	С	0.51	482	34.0	18.6 17.2	<i>55.1</i>	30.5			
12	5274	С	0.45				04 7	67.0		•	
13	5280	С	0.50	480	10.0	5.2 5.3	21.7	67.8			
14	5809	С	0.16				00	E	DMD	DATA	
15	5813	С	0.17	89	45.0	65.0 20.5	20	• >	DIVIN	DATA	
16	5819	С	0.05								
17	6104	С	0.05								
18	6114	С	0.05			70 4 07 0	40	_	DMD	DATA	
19	6121	С	0.41	27	4.0	32.4 27.0	40	• 0	DMK	DATA	
20	6130	С	0.05			- 1 14 -	70	c	DMD	DATA	
21	6137	С	0.05	23	10.0	7.1 14.3				DATA	
22	6145	С	0.04			**Data f	rom MC	viray	1901		

WELL: RICHIE #1

No.	INTERVAL	SAMPLE TYPE	TOC (w†%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT	AROM	ONS -(w+%)		OC HC TOTAL	EOM(per TOC) (mg/g TOC)
1 2 3	3710-3740 3770-3800 4550-4580	CT CT CT	1.46 1.00 1.04	1333 684 3120	5.0 11.6 22.8	3.8 13.3 3.0 5.9	1.7 3.7 4.6 6.4	30.8 35.6 18.9	63.7 47.4 73.5 73.3	73.3 116.3 237.1 382.5	91.3 68.4 300.0 307.9
4 5 6 7 8 9	4610-4640 4730-4760 4760-4790 4790-4820 4940-4970 5030-5060	CT CT CT CT CT CT	1.01 1.20 1.81 2.58 1.32 6.55	3110 2155 2705 5233 2612 8312	37.9 62.1 32.0 78.9 13.1 7.9	25.1 12.5 30.6 1.9 2.9	9.5 8.9 8.3 4.7 3.3	26.2 18.7 20.1 6.6 21.6	39.1 57.9 41.0 86.9 72.1	745.7 578.7 2035.3 172.4 515.3	179.6 149.4 202.8 197.9 126.9
10 11 12 13	5180-5210 5240-5270 5480-5510 5630-5660	CT CT CT	8.90 21.00 67.40 40.50	4919 2098 36465 22719	4.8 0.9 5.5 7.4	3.5 3.6 4.0 4.8	5.1 5.3 6.2 8.4	18.5 19.3 15.6 18.7	72.8 71.8 74.2 68.1	423.3 186.9 3719.3 2999.1	55.3 10.0 54.1 56.1

WELL: SPENCER #2

No.	INTERVAL (ft)	SAMPLE TYPE	TOC (w†%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT	AROM	ONS -(w†\$)	ASHP		HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
1	1600-1900	СТ	1.35	472	3.4	6.3	3.3	32.7	50.6	7.1	45.4	35.0
2	1900-2100	CT	3.45	1463	1.7	2.2	1.7	6.8	86.3	3.0	57.9	43.0
3	2100-2400	CT	1.95	837	2.9	4.7	2.1	21.4	63.9	7.9	57.0	43.0
4	2700-3000	CT	1.10	518	3.7	5.2	2.6	21.8	54.5	15.9	40.3	47.0
5	3000-3300	CT	1.00	470	5.9	9.3	3.3	41.4	44.2	1.8	59.2	47.0
6	3300-3600	CT	1.00	479	6.0	8.4	4.2	28.3	53.8	5.3	60.5	48.0
7	3600-3900	CT	0.95	674	3.1	2.7	1.6	13.8	65.5	16.4	29.0	7.1.0
8	3900-4000	CT	1.00	525	8.1	4.0	11.2	8.6	65.1	11,1	80.6	53.0
9	4200-4350	CT	0.85	417	4.7	6.4	3.1	19.6	56.0	14.9	39.6	49.0
-	4500-4500	CT	0.30	573	30.4	10.7	5.2	15.3	60.9	7.9	91.1	191.0
10	4900-5150	CT	0.55	645	8.9	3.9	3.6	17.4	53.6	21.5	48.7	118.0
11		CT	0.95	1384	12.3	4.7	3.7	7.2	77.9	6.5	116.5	146.0
12	5200-5450	-	0.20	306	6.6	3.1	1.2	14.8	62.5	18.4	13.2	153.0
13	5500-5800	CT		981	10.2	7.3	0.5	9.9	72.5	9.8	76.6	131.0
14	5800-6000	CT	0.75		8.9	4.0	1.1	7.5	75.8	11.6	22.2	174.0
15	6000-6259	CT CT	0.25	433 236	11.4	9.9		16.7		16.7	34.1	79.0

WELL: STRZELECKI #3

No.	INTERVAL (ft)	SAMPLE TYPE	TOC (w+%)	EOM (ppm)	HC YEILD (mg/g TOC)				ASHP	
	4700 4770	OT	1 05	57 0	6.0	15.1	4.9	52.4	27.6	
1	1300-1330	CT	1.85	578	6.0	9.4	2.7	52.7	35.2	
2	1600-1630	CT	1.63	1031	8.0	11.8	6.6	58.1	23.5	
3	1900-1930	CT	1.75	403	4.0 3.0	7.1	6.3	52.4	34.2	,
4	2020-2050	CT	16.70	3742 1136	7.0	14.6	6.4	56.4	22.6	
5	2320-2350	CT	3.48		5.0	10.5	5.9	67.0	16.6	
6	2620-2650	CT	4.36	1243	6.0	8.4	4.2	63.3		
7	2800-2830	CT	3.14	1462 114	0.0	0.4	4.2	0,00	24.1	
8	3319	SWC	0.30 0.29	128	4.0	3.4	5.1	91	.5	
9	3329	SWC	1.07	601	8.0	7.7	6.1	53.1	33.1	
10	3420	SWC .		872	5.0	13.5	2.3	62.1	22.1	PROBABLE CAVINGS
11	3460-3490	CT	3.00		35.0		14.7	10.5	21.7	
12	3590	SWC	0.90	461 276	10.0		10.8	38.7	25.7	577111E5
13	3700	SWC	0.97	270	10.0	24.0	10.0	50.7	2701	
14	3802	SWC	0.71	552						
15	3902	SWC	0.82	1136	24.0	10 8	11 0	50.2	19.0	
16	4114	SWC CT	1.45 2.36	499	6.0		8.0	46.6	27.1	
17	4180-4210			851	30.0		16.1	37.8	24.4	
18	4210	SWC	1.07 1.44	1581	36.0		13.3	40.8	26.5	
19	4260	SWC	0.63	423	20.0	1207	1000	40.0	20.5	•
20	4318	SWC SWC	0.80	510	28.0	25.7	17.7	35.6	21.0	
21	4410		1.26	1258	48.0	38.5		32.8	19.2	
22	4470	SWC CT	1.88	884	22.0		8.7	33.2	19.5	
23	4480-4510	SWC	1.51	1295	34.0		16.9	30.5	29.5	
24	4734	SWC	0.91	841	42.0		26.7	16.7	38.3	
25	4894 4919	SWC	0.66	1220	37.0		10.4			
26		SWC	0.12	266	37.0	7. 0		3,4.		
27	5043		1.50	1750	43.0	16.6	20.6	30.8	32.0	
28	5256 5330 5350	SWC CT	2.90	6690	64.0		12.0	32.6	39.5	
29	. 5320-5350	SWC	7.05	7945	48.0		20.1	36.1	21.3	
30	5336 5400	SWC	3.74	6565	95.0		17.0	29.7	16.3	
31	5400	3MC	2.14	לטלט	9,000	2,.0		~		•

Strzelecki 3 (Continued)

32	5440-5470	СТ	4.50	4912	42.0	24.7 13.6	30.2	31.5
33	5509	SWC	0.86	940	55.0	21.1 29.4	30.4	19.1
34	5686	SWC	0.09					
35	5830-5860	CT	1.44	876	23.0	26.1 11.8	32.9	29.2
36	5836	SWC	1.10	561	12.0	15.0 8.8	76	.2
37	5904	SWC	0.28					
38	5948	SWC	0.43	730				
39	6002	SWC	2.35	1048	20.0	21.2 22.7	26.6	29.5
40	6040-6070	CT	30.10	12143	8.0	7.7 11.1	35.6	45.6
41	6043	SWC	2.35	1632	27.0	12.6 25.8	14.6	47.0
42	6070-6100	CT	19.10	4869	7.0	14.1 12.8	31.4	41.7
43	6124	SWC	0.20	1022				
44	6154	SWC	0.81	679	**Data	from McKirdy	1982	

WELL: STRZELECKI #4

No.	INTERVAL (ft)	SAMPLE TYPE	TOC (wt%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT	AROM	ONS -(w+%)	ASHP	LOC	HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
	~~~~~~~~~											
1	3242	SWC	1.20	846	13.8	14.5	8.1	20.9	36.8	22.7	165.8	70.5
2	3323	SWC	1.05	1024	24.1	18.1	6.6	15.9	45.6	13.8	252.9	97.5
3	3353	SWC	0.90	1338	11.2	4.8	2.7	6.2	68.1	18.2	100.4	148.7
4	3593	SWC	0.75	571	12.4	10.9	5.4	15.8	54.9	13.0	93.0	76.1
5	3770	SWC	1.00	459	12.9	14.8	13.4	20.1	39.6	12.1	129.4	45.9
6	3982	SWC	0.75	2974	49.2	8.7	3.7	4.6	61.4	21.6	368.7	396.5
7	4190	SWC	1.25	985	20.2	149.9	5.7	19.6	33.7	21.1	252.2	78.8
8	4508	SWC	1.10	1771	49.7	25.6	5.3	15.9	24.9	28.3	547.2	161.0
9	4546	SWC	0.70	1551	89.9	33.7	6.9	13.9	23.9	21.6	629.5	221.5
10	4564	SWC	0.60	3552	201.3	28.0	6.0	16.1	28.9	21.0	1207.7	592.0
11	4755	С	2.60	4552	49.7	21.1	7.3	29.1	38.3	4.2	1292.9	175.1
12	4819	SWC	0.55	1778	64.6	14.4	5.6	16.2	24.1	39.7	355.5	323.2
13	5050	SWC	0.10	2207	117.0	5.0	0.3	2.5	72.2	20.0	117.0	2207.0
14	5202	SWC	0.95	1968	53.2	17.8	7.9	16.7	45.9	11.7	505.6	207.1
15	5300	SWC	1.30	1890	50.1	24.9	9.6	28.8	20.8	15.9	651.7	145.3
16	5359	SWC	0.50	1132	63.4	22.7	5.3	13.3	38.7	20.0	3,17.0	226.4
17	5404	SWC	1.15	2345	84.2	32.6	8.7	23.1	33.1	2.5	968.4	203.9
18	5423	SWC	1.95	4439	57.6	17.8	7.5	17.2	34.5	23.0	1122.9	227.6
19	5490	C	1.10	1539	63.2	36.2	9.0	24.8	30.0	0.0	695.6	139.9

WELL: STRZELECKI #5

No.	INTERVAL (ft)	SAMPLE TYPE	TOC (w†%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT	AROM	ONS -(w†%)	ASHP	LOC	HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
											•	
1	1500-1800	СТ	2.05	867	2.7	3.9	2.4	19.6	68.3	5.8	54.6	42.3
2	2400-2600	CT	2.00	1142	3.7	3.3	3.1	9.8	82.4	1.4	73.1	57.1
3	2700-3000	CT	1.50	739	9.8	13.8	6.0	26.3	45.9	8.0	146.4	49.3
4	3000-3250	CT	1.25	575	6.1	8.4	4.9	23.8	50.8	12.1	76.5	46.0
5	3300-3320	CT	1.40	1112	7.6	6.4	3.2	20.5	55.8	14.1	106.7	79.4
6	3400-3700	CT	1.30	644	6.0	7.4	4.8	27.2	46.3	14.3	78.5	49.5
7	3700-4000	CT	0.90	528	10.3	5.0	12.6	20.8	44.0	17.6	93.0	58.7
8	4000-4200	CT	1.05	773	7.7	4.1	6.4	16.1	58.5	14.9	81.1	73.6
9	4300-4400	CT	1.00	737	13.6	11.2	7.2	15.6	55.2	10.8	135.6	73.7
10	4500-4600	CT	0.85	697	17.7	14.2	7.3	18.0	47.1	13.4	150.0	82.1
11	5000-5300	CT	1.15	928	15.4	14.3	4.8	18.2	49.9	12.8	177.3	80.7
12	5400-5500	CT	3.70	4208	16.9	8.4	6.4	9.2	69.2	6.8	624.3	114.0
13	5600-5750	CT	1.45	2537	48.6	19.4	8.4	8.4	49.4	14.4	705.4	175.0
14	5850-5900	CT	1.60	709	12.9	23.0	6.2	20.4	37.4	13.0	207.0	44.3
15	6000-6300	CT	4.35	1878	8.9	14.5	6.0	7.6	68.6	3.3	385.2	43.2

WELL: TANBAR NORTH #1

No.	INTERVAL (ft)	SAMPLE TYPE	TOC (wt%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT	AROM	ONS -(w+%)	ASHP	LOC	HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
1	3660-3990	СТ	1.17	956	2.7	2.3	1.0	5.5	87.3	3.9	31.5	81.7
2	3990-4290	CT	1.10	1125	3.2	2.0	1.1	3.3	92.4	1.1	34.9	102.3
3	4290-4410	CT	1.64	1545	8.9	5.4	4.0	20.0	66.3	4.3	145.2	94.2
4	4410-4470	ĊT	1.39	1438	12.8	7.9	4.5	22.0	65.3	0.3	178.4	103.5
5	4470-4770	CT	2.94	3633	18.4	8.6	6.3	17.7	46.0	21.4	541.4	123.6
6	4650-4710	CT	3.74	7556	46.7	15.2	7.9	17.0	52.0	7.8	1745.2	202.0
7	4770-5070	CT	4.02	1694	9.1	16.1	5.6	34.2	41.1	3.0	367.3	42.1
8	5070-5370	CT	3.66	894	4.9	13.7	6.5	21.2	52.1	6.5	180.4	24.4
9	5370-5412	CT	1.66	851	6.9	8.2	5.3	15.1	63.9	7.4	115.0	51.3
10	5412-5710	CT	1.07	1061	20.1	14.0	6.3	22.3	55.1	2.2	215.5	99.2
11	5550-5800	CT	0.70	972	33.5	18.2	5.9	16.8	55.3	3.8	234.3	138.9
12	5710-5830	CT	0.57	837	38.0	20.9	5.0	17.3	50.3	6.5	216.7	146.8
13	5830-6130	CT	0.88	1982	24.1	7.2	3.5	8.6	67.1	13.6	212.0	225.2
14	6130-6480	CT	1.69	2482	11.2	5.1	2.5	6.5	77.4	8.6	188.7	146.9
15	6480-6670	CT	0.38	619	22.3	11.2	2.5	13.3	64.4	8.6	84.8	162.9
16	6670-6980	CT	5.15	4622	6.9	5.2	2.5	4.9	81.0	6.5	355.7	89.7
17	6980-7280	CT	0.44	927	16.2	5.9	1.8	10.1	76.8	5.4	71.4	210.7
18	7280-7580	CT	0.46	968	16.2	5.4	2.3	10.1	81.9	0.3	74.5	210.4
19	7580-7652	CT	0.18	530	25.6	6.4	2.3	9.7	77.2	4.4	46.1	294.4
20	7652-7950	CT	0.95	1162	13.6	7.4	3.7	10.6	70.5	7.8	129.0	122.3
21	7950-8180	CT	1.57	1112	5.5	4.2		11.3	77.6	3.3	86.7	70.8
22	8180-8480		0.58	244	5.7	9.4		16.7	62.0	7.8	33.2	42.1
23	8480-8710	CT	0.45	388	14.0	12.5		16.6	50.2	16.9	62.8	86.2

WELL: TARTULLA #1

	INTERNAL	CAMOLE	TOC	EOM	HC YEILD	SAT	AROM	ONS	ASHP	LOC	HC TOTAL	EOM(per TOC)
No.	INTERVAL (ft)	SAMPLE TYPE	(w†%)	(ppm)	(mg/g TOC)			-(w+%)			(ppm)	(mg/g TOC)
	, .,,											
1	0-300	CT	0.40	196	3.7	1.2	6.4	43.6	14.9	6.9	14.9	49.1
2	300-600	CT	0.35	226	11.0	9.0	8.0	28.5	35.0	19.5	38.4	64.6
3	1200-1500	CT	0.90	681	3.6	0.3	4.4	18.4	66.6	10.3	32.0	75.7
4	1500-1800	CT	1.30	631	4.9	6.5	3.7	34.7	35.6	19.5	64.3	48.5
5	1800-2100	CT	1.25	687	3.8	2.9	4.1	34.8	41.2	17.0	48.0	54.9
6	2100-2400	CT	3.50	2128	6.0	4.6	5.2	26.2	52.3	11.7	208.5	60.8
7	2400-2700	CT	1.55	1132	8.6	5.1	6.7	30.4	38.8	19.0	133.5	73.0
8	2700-3000	CT	3.25	1535	3.8	2.1	5.9	34.2	42.2	16.7	122.7	47.2
9	3000-3300	CT	1.10	463	2.2	1.0	4.2	30.6	50.0	14.2	24.1	42.1
10	3300-3600	CT	1.00	485	3.2	1.3	5.4	35.5	45.4	12.4	32.5	48.5
11	3570-3680	CT	2.70	2497	13.0	11.2	2.9	27.6	55.0	3.3	352.1	92.5
12	3700-3900	CT	1.65	840	5.8	6.4	4.9	32.4	51.4	4.9	94.9	50.9
13	3900-4200	CT	1.40	597	5.4	7.0	5.7	39.5	35.7	12.1	75.7	42.6
14	4200-4500	CT	0.80	309	5.9	10.8	4.6	34.7	45.2	4.7	47.6	38.6
15	4500-4800	CT	0.95	468	3.7	6.0	1.6	26.3	61.4	4.7	35.6	49.3
16	4850-5070	CT	0.94	1072	18.9	12.9	3.7	19.1	57.8	6.5	177.9	114.0
17	5070-5280	CT	0.93	1459	46.6	24.6	5.1	24.9	41.4	4.0	433.4	156.9
18	5180-5190	CT	0.98	2203	54.9	19.0	5.4	22.4	37.6	15.7	538.0	224.8
19	5250-5270	CT	0.68	1591	49.1	17.8	3.2	23.0	45.3	10.7	334.0	234.0
20	5280-5400	CT	2.68	5762	17.6	3.9		8.8	72.7	10.3	472.5	215.0
21	5400-5700	CT	0.40	476	26.2	12.0	10.0	21.5	48.3	8.2	104.7	119.0
22	5620-5650	CT	0.33	2409	62.8	6.1	2.5	11.0	72.8	7.6	207.0	730.0
23	5700-6000	CT	1.20	836	11.6	10.0	6.7	22.0	54.7	6.6	139.7	69.7
24	5930-5950	CT	0.53	2982	35.4	4.2	2.1	15.7	58.1	19.9	188.0	562.6
25	6000-6300	CT	2.45	4566	21.2	3.9	7.5	9,2	73.6	5.8	520.6	186.4
26	6070-6100	CT	1.10	3874	52.5	10.2	4.7	13.3	55.5	16.1	577.0	352.2
27	6180-6200	CT	1.32	3066	45.5	13.2	6.4	19.6	58.1	2.7	601.0	232.3
28	6300-6600	CT	0.85	1834	20.3	2.4	7.0	9.5	66.0	15.1	172.4	215.8
29	6600-6900	CT	4.85	9670	17.7	0.9	8.0	8.4	71.5	11.2	860.7	199.4
30	6700-6720	CT	6.85	13914	5.1	1.4	1.1	4.7	91.0	1.8	348.0	203.1
31	6900-7200	CT	0.35	583	19.5	7.8	3.9	14.7	57.5	16.1	68.2	166.6

Tart	ulla 1 (Cont	inued	)								110 0	05.7
32	7200-7600	CT	0.65	622	18.3	16.1 3	3.0	16.1	61.2	3.6	118.8	95.7
33	7600-7700	CT	2.36	2171	25.4	22.5	5.1	14.4	50.1	7.9	599.3	92.0
34	7700-7820	CT	8.25	5309	9.0	7.9 6	5.0	12.1	72.3	1.7	738.5	64.4
	7820-7880	CT	4.46	1620	3.5	6.6 3	3.1	10.7	75.9	<b>3.7</b>	157.0	36.3
35		CT	21.60	15291	1.8		1.3	3.7	89.6	4.0	397.6	70.8
36	7930-7980			•		3.1		11.4	68.4	7.8	758.3	29.4
37	8000-8300	CT	20.80	6121	3.6					7.1	884.5	47.1
38	8300-8320	CT	5.85	2756	15.1	26.0			36.6			14.6
39	8300-8503	CT	61.30	8931	2.1	0.9 13	<b>5.</b> 8	17.2	56.0	12.1	1315.6	· · · •
40	NOT STATED	CT	1.45	3147	14.5	0.8	5.9	16.9	69.3	7.1	210.9	217.1

### WELL: THOMAS #1

No.	INTERVAL	SAMPLE TYPE	TOC (w†%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT	AROM	ONS (w†%)	ASHP	LOC	HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
i												

1	471117"	SWC	1.10
2	5724 ' 5"	SWC	1.31
3	6847	SWC	1.40
4	6858   5 "	SWC	5.30
5	6947	SWC	1.23
6	695619"	SWC	0.41
7	729417"	SWC	1.89
8	743917"	SWC	1.74
9	7501 '4"	SWC	2.51
10	7728 ' 10"	SWC	0.98
11	784617"	SWC	0.17

## WELL: THUNDA #1

No.	INTERVAL (ft)	SAMPLE TYPE	TOC (w†%)	EOM (ppm)	HC YEILD (mg/g TOC)			ONS -(w†%)-			HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
1 2 3	6165 6916 6939	C C C	1.15 10.40 3.24	1753 1533 7795	14.0 5.0 13.0	9.4 31.3 5.3	3	68.	7	**Data	from McKir	dy 1982
WELL	: TINPILLA	#1										
No.	INTERVAL (ft)	SAMPLE TYPE	TOC (wt%)	EOM (ppm)	HC YEILD (mg/g TOC)			ONS -(w+%)			HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
1	3890-3920	CT	1.10	2044	12.3	3.8	2.8	75.5	17.9		134.9	185.8
2	3950-3980	CT	1.99	2716	34.4	18.3	6.9	30.2	44.6		684.5	136.5
3	3980-4010	CT	1.25	1646	23.2	10.8	6.8	18.4	64.0		289.7	131.7
4	4040-4070	CT	1.48	985	7.6	6.8	4.6	18.5	70.1		112.4	66.6
5	4640-4670	CT	0.81	2840	80.3	17.1	5.8	54.9	22.1	•	650.3	350.6
6	4670-4700	CT	1.06	2558	28.5	7.4	4.4	16.0	72.1		301.8	241.3
7	4790-4820	CT	1.88	1414	15.3	10.9	9.4	15.6	64.2		287.0	75.2
8	4820-4850	CT	0.81	957	29.1	15.4	9.2	22.8	52.6		235.3	118.1
9	4850-4880	CT	2.26	2851	23.6	10.7	8.0	6.8	74.5		533.3	126.2
10	4910-4940	CT	2.18	3490	16.0	5.2	4.8	11.7	78.3		349.0	160.1
11	5180-5210	CT	11.80	8909	14.0	10.3	8.2	12.7	68.7		1648.2	75.5
12	5240-5270	CT	7.10	7658	13.6	5.4	7.2	19.0	68.3		965.3	107.9
13	5300-5330	CT	7.55	8668	17.8	8.5	7.0	17.1	67.4		1343.4	114.8
14	5360-5390	CT	6.45	3660	5.8	5.3	5.0	21.6	68.1		376.7	56 <b>.</b> 7
15	5390-5420	CT	4.50	2594	4.7	3.3	4.9	19.9	71.9		212.5	57 <b>.</b> 6
16	5480-5510	CT	6.40	2890	4.8	4.7	5.9	19.7	69.7		306.6	45.2
17	5510-5540	CT	38.40	25285	8.0	6.1	6.1	20.5	67.3		3082.6	65.8
18	5600-5630	CT	55.50	23959	6.0		8.2	18.3	67.6		3356.6	43.2
19	5660-5690	CT	42.70	40461	12.6	5.4	7.9	17.6	69.1		5383.8	94.8

WELL: TOODLA #1

No.	INTERVAL (ft)	SAMPLE TYPE	TOC (wt%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT 	AROM	ONS -(w+%)	ASHP			EOM(per TOC) (mg/g TOC)
1	498	С	0.85	208	6.0			35.9	38.2			·
2	525	С	0.91	149	1.0	6.8	2.1	64.6	26.5			
3	559	С	0.77	133	3.0	10.8		47.7	36.9			
4	601	С	1.06	157	2.0	9.8	3.3	58.8	28.1			
5	638	С	0.97	308	3.0	6.6	1.3	52.8	39.3			
6	660	С	0.71	219	6.0	18.3	2.4	42.7	36.6			
7	686	С	1.00	265	2.0	4.9	3.8	35.8	55.5			
8	705	С	1.10	302	3.0	7.7	3.5	43.5				
9	731	С	1.20	352	3.0	7.6	3.8	61.0	27.6			
10	757	С	1.09	271	4.0	8.6		48.3	38.2			
11	791	С	1.46	307	3.0	9.3	5.0	67.5	18.2			-
12	836	С	1.29	251	2.0	10.1	1.6		26.3			
13	850	С	1.85	342	4.0	13.8	5.4	63.7	17.1			
14	854	С	1.63	366	4.0	10.2		61.7	22.3	**Do+o	from MoKi	ndy 1082
15	871	С	1.99	455	5.0	13.9	6.4	60.5	19.2	""Dala	from McKi	1 dy 1902
WELI	L: WACKETT A	<u>#1</u>										
No.	INTERVAL	SAMPLE	TOC	EOM	HC YEILD	SAT	ARON	ONS	ASHP	LOC		EOM(per TOC)
	(ft)	TYPE	(wt%)	(ppm)	(mg/g TOC)			(wt%	)	 	(ppm)	(mg/g TOC)
1	4180-4220	CT	0.95	807	17.7	18.2	2.6	10.3	58.8	10.2	167.8	84.9
2	4410-4440	CT	0.97	1877	69.1	32.8	2.9	16.4	36.1	11.7	670.1	193.5
3	4600-4630	CT	0.90	836	23.1	21.0	3.9	14.9	55.9	4.4	208.2	92.9
4	4850-4870	CT	0.88	801	15.2	13.2	3.5	16.2	58.8	8.3	133.7	91.0
5	5100-5130	CT	0.81	988	32.2	22.6	3.8	17.0	52.7	3.9	260.9	122.0
6	5850-5890	CT	1.64	2849	14.9	5.8	2.8	7.7	80.0	3.7	245.7	173.7
7	6010-6050	CT	2.02	1369	18.0	19.2	7.3	20.6	46.8	6.2	362.9	67.8
8	5360-5390	CT	5.50	7173		7.3	4.6	9.1	76.0	3.0	853.5	130.4
9	5510-5570	CT	1.01	1702	70.6	36.3	5.6	19.5	36.2	2.3	713.1	168.5
											•	

WELL: WALKANDI #1

		CAMBLE	TOO	ГОМ	HC YEILD	SAT	AROM	ONS	ASHP	LOC	HC TOTAL	EOM(per TOC)
No.	INTERVAL	SAMPLE TYPE	TOC (wt%)	EOM (ppm)	(mg/g TOC)		•				(ppm)	(mg/g TOC)
	(ft)	HIFE	(WID)	יווקק)	(mg/g 100/							
1	600-900	CT	0.75	782	32.8	22.1	9.4	24.9	23.2	20.4	245.7	104.0
2	900-1200	CT	2.00	859	3.3	5.9	1.7	27.7	47.3	17.4	65.4	43.0
3	1200-1500	CT	7.10	2268	1.3	2.7	1.3	36.5	36.4	23.1	90.9	32.0
4	1500-1800	CT	2.95	921	1.6	2.8	2.5	59.4	27.6	7.7	48.5	31.0
5	1800-2100	CT	2.80	906	2.2	4.1	2.9	47.5	25.2	20.3	62.7	32.0
6	2100-2400	CT	1.45	481	1.3	1.6	2.4	31.5	41.7	22.8	19.1	33.0
7	2400-2700	CT	1.10	450	3.8	5.3	3.9	34.9	35.4	20.5	41.5	41.0
8	2700-3000	CT	1.30	564	5.6	7.2	5.9	37.7	31.8	17.4	73.2	43.0
9	3000-3300	CT	1.40	883	7.7	5.1	7.1	44.9	29.6	13.3	107.6	63.0
10	3300-3600	CT	1.30	552	5.4	5.9	6.6	37.3	30.6	19.6	69.9	43.0
11	3600-3900	CT	0.90	548	6.5	4.8	5.9	33.8	40.4	15.1	58.7	61.0
12	3900-4200	CT	1.05	794	5.2	4.1	2.7	22.0	56.3	14.9	54.3	76.0
13	4200-4500	CT	1.00	661	9.5	4.8	9.6	13.3	56.5	15.8	95.0	66.0
14	4500-4800	CT	1.40	1127	8.1	6.1	3.9	26.1	55.7	8.2	113.4	81.0
15	4800-5100	CT	1.05	447	4.6	6.3	4.3	26.2	50.9	12.3	47.9	43.0
16	5100-5400	CT	1.20	820	6.7	4.8	5.0	23.9	64.8	1.5	80.0	68.0
17	5400-5630	CT	1.20	729	10.2	8.5	8.2	25.9	47.1	10.3	122.2	61.0
18	5630-5990	CT	1.00	1407	16.1	5.6	5.8	15.3	67.4	5.9	160.7	141.0
19	5670-5990	CT	0.45	944	16.4	4.7	3.1	8.0	77.5	6.7	73.7	210.0
20	5990-6290	CT	0.10	363	18.1	3.1	1.9	10.9	64.1	20.0	18.1	363.0
21	6290-6590	CT	0.10	307	16.6	1.9	3.5	11.2	69.4	14.0	16.6	307.0
22	6590-6890	CT	0.20	592	24.9	4.9	3.5	13.0	68.1	10.5	49.7	296.0
23	6890-7190	CT	0.15	626	35.9	6.4	2.2	13.0	60.6	17.8	53.9	418.0
24	7190-7490	CT	0.15	794	46.0	5.9	2.8	6.7	82.7	1.9	69.0	529.0
25	7490-7790	CT	0.15	1283	8.6	0.8	0.2	1.4	89.6	8.0	12.8	855.0
26	7790-8090	CT	0.05	283	26.0	3.8	0.8	8.0	74.7	12.7	13.0	566 <b>.</b> 0
27	8090-8390	CT	0.70	2351	4.4	0.7	0.6	1.5	90.5	6.7	30.6	336.0
28	8390-8690	CT	2.30	7149	14.3	2.4		1.3	92.2	1.9	329.0	311.0
29	8690-8990		7.70	9485	10.5	5.3		4.6	85.9	1.0	805.0	123.0
30	8990-9270		3.45	2676	10.8	6.1	7.8	6.1	76.8	3,2	374.0	78.0
31	9270-9570		1.10	1905	19.5	6.4	4.9	7.0	81.6	0.1	215.0	173.0
32	9570-9636		1.50	1831	12.6	5.9	4.4	11.4	67.2	11.1	188.5	122.0
											•	

### Walkandi 1 (Continued)

33 34 35	9636-9930 9930-10230 10230-10253	CT CT CT	0.65 0.35 0.45	491 435 549	9.0 11.3 9.3	7.0 7.4 5.2	4.8 1.7 2.4	15.5 16.5 12.4	56.1 60.1 60.8	16.6 14.3 19.2	58.3 39.5 41.7	76.0 124.0 122.0
WELL	: WANTANA #	<u>1</u>						,				
No.	INTERVAL (ft)	SAMPLE TYPE	TOC (w+%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT 	AROM	ONS -(w†%)	ASHP		HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
1 2	2400 <b>–</b> 2700 2700 <b>–</b> 3000	CT CT	3.80 7.65	2008 5477	3.2 3.4	3.0 1.8	3.1 3.0	24.0 22.3	64.3 63.5	5.6 9.4	122.6 262.9	52.9 71.6
3 4	3000 <b>–</b> 3300 3300 <b>–</b> 3600	CT CT	1.20 1.00	581 728	8.3 9.7	9.8 8.5	7.4 4.8	32.2 30.6	35.7 37.6	14.9 18.5	99.9 96.8	48.4 72.8
5	3600-3900 3900-4200	CT CT	1.70 1.20	1161 795	8.4 7.0	8.4 5.9	3.9 4.6	29.5 20.4	47.9 49.9	10.3 19.2	142.8 83.5	68.3 66.3
7	4200-4500 4500-4800	CT CT	1.15	711 438	6.6 5.6	5.5 7.9	5.2 3.7	36.9 26.4	50.0 45.3	2.4 16.7	76.0 50.8	61.8 48.7
8	4800-5100	CT	0.95	639 707	7.7 7.9	5.7 8.2	5.7 4.7	21.7	57.0 49.8	9.9 5.0	72.9 91.2	67.3 61.5
10	5100-5400 5400-5570	CT CT	0.80	354	10.9	14.4 14.3	10.3	22.7 32.3	52.6 26.4	0.0	87.5 101.1	44.3 82.9
12 13	5570-5700 5700-6000	CT CT	0.50 0.60	414 648	20.2 25.4	15.2	8.3	24.8	43.6	12.1	152.3 116.3	108.0 186.4
14 15 16	6000-6300 6300-6600 6600-6900	CT CT CT	0.40 1.45 3.10	746 2355 4401	29.1 25.2 26.7	9.1 9.6 8.6	6.5 5.9 10.2	20.3 21.2 14.6	53.3 61.7 60.4	1.6	365.0 827.6	162.4 142.0
17 18	6900 <b>-</b> 7200 7200 <b>-</b> 7500	CT CT	4.20 0.50	6912 600	8.9 9.0	2.6 4.3	2.8 3.2	11.2 12.0 23.9	82.0 70.3 44.9	1.4 10.2 10.6	373.3 45.0 120.7	164.6 120.0 146.5
19	7500-7800	CT	0.40	586	30.2	14.7	5.9	23.9	44.9	10.6	120.7	146.5

## WELL: WAREENA #1

No.	INTERVAL (ft)	SAMPLE TYPE		EOM (ppm)	HC YEILD (mg/g TOC)	SAT 	AROM	ONS -(w+%)	ASHP	LOC	HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
						40.0		10.0	70.6	0.7	168.0	93.9
1	2950-3000	CT	1.04	977	16.2	12.8	4.4	10.0	72.6	0.3	82.8	97 <b>.</b> 3
2	3200-3230	CT	0.81	788	10.2	7.4	3.1	11.7	73.6	4.1	38.1	136.2
3	3231	SWC	0.22	300	17.3	11.6	1.1	11.6	71.6	4.1	117.4	103.0
4	3440-3500	CT	1.90	1957	6.2	3.9	2.1	10.0	73.4	10.6 9.3	80.5	71.5
5	3950-4000	CT	1.34	958	6.0	6.3	2.1	10.3	72.1		785.6	156.0
6	4168	SWC	1.69	2636	46.5	23.3	6.5	16.0	37.7	16.5	320.0	85.1
7	4320-4370	CT	1.98	1684	16.2	13.7	5.3	17.0	62.4	1.6	1935.8	114.9
8	4333	SWC	4.68	5379	41.4	27.9	8.1	23.9	37.9	2.2	180.6	97.7
9	4869	SWC	0.86	840	21.0	17.7	3.8	17.1	60.8	0.6	379.0	151.1
10	6000-6050	CT	0.76	1148	49.9	29.6	3.4	11.1	38.9	16.9	122.2	27.1
11	6100-6150	CT	9.20	2491	1.3	3.0	1.9	8.0	86.5	0.5		43.0
12	6105	SWC	5.63	2422	9.9	15.0	8.0	27.3	43.0	6.7	556.8	27 <b>.</b> 0
13	6192	SWC	3.18	858	4.2	10.7	5.0	22,3	50.4	11.6	134.8	27.0
WELL	_: WEEDINA #	#1										
			<b>***</b>		HO VELLO	CAT	ADOM	ONG	ACHD	LOC	HC TOTAL	FOM(ner TOC)
No.	INTERVAL	 SAMPLE		EOM	HC YEILD	SAT	AROM		ASHP		HC TOTAL	
No.	INTERVAL (ft)		TOC (w+%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT	AROM				HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
No.		 SAMPLE			HC YEILD (mg/g TOC)	SAT 	AROM					
**********	(ft)	SAMPLE TYPE	(w†%) 	(ppm)	(mg/g TOC)			-(w+%)				
1	(ft)  1980-2010	SAMPLE TYPE CT	(w+%) 	(ppm)  2450	(mg/g TOC)	1.2	14.8	-(w+%)	55.7	11.4	(ppm)	(mg/g TOC)
1 2	(ft) 1980-2010 2180-2210	SAMPLE TYPE CT CT	(w+%)  1.90 1.80	(ppm)  2450 3383	(mg/g TOC) 20.6 3.8	1.2	14.8	16.9 16.1	55.7 59.7	11.4	(ppm) 391.9 67.6	(mg/g TOC)
1 2 3	(ft)  1980-2010 2180-2210 296210"-2	SAMPLE TYPE  CT CT CT	1.90 1.80 0.10	(ppm)  2450 3383 109	(mg/g TOC) 20.6 3.8 9.6	1.2 0.6 6.3	14.8 1.4 2.5	16.9 16.1 23.8	55.7 59.7 40.0	11.4 22.2 27.4	(ppm) 391.9 67.6 9.6	(mg/g TOC)  128.9 187.9
1 2 3 4	(ft) 1980-2010 2180-2210 296210"-2' 336316"-8'	SAMPLE TYPE  CT CT CT C	1.90 1.80 0.10 0.10	(ppm)  2450 3383 109 76	(mg/g TOC)  20.6 3.8 9.6 12.0	1.2 0.6 6.3 9.5	14.8 1.4 2.5 6.3	16.9 16.1	55.7 59.7 40.0	11.4	(ppm) 391.9 67.6	(mg/g TOC)  128.9 187.9 109.0
1 2 3 4 5	(ft)  1980-2010 2180-2210 296210"-2' 336316"-8' 336319"-336	SAMPLE TYPE  CT CT CT CT CT	1.90 1.80 0.10 0.10 0.05	(ppm) 2450 3383 109 76 227	20.6 3.8 9.6 12.0 † From S	1.2 0.6 6.3 9.5	14.8 1.4 2.5 6.3	16.9 16.1 23.8	55.7 59.7 40.0	11.4 22.2 27.4	(ppm) 391.9 67.6 9.6	(mg/g TOC)  128.9 187.9 109.0
1 2 3 4 5 6	(ft)  1980-2010 2180-2210 296210"-2' 336316"-8' 336319"-3363	SAMPLE TYPE  CT CT CT CH CT	1.90 1.80 0.10 0.10 0.05 <0.05	(ppm) 2450 3383 109 76 227 223	20.6 3.8 9.6 12.0 † From S	1.2 0.6 6.3 9.5 Saxby	14.8 1.4 2.5 6.3 1977	16.9 16.1 23.8 20.6	55.7 59.7 40.0 60.3	11.4 22.2 27.4 3.3	(ppm) 391.9 67.6 9.6 12.0	(mg/g TOC)  128.9 187.9 109.0
1 2 3 4 5 6	(ft)  1980-2010 2180-2210 296210"-2' 336316"-8' 336319"-3363 378312"-378	SAMPLE TYPE  CT CT CT C315" C315" C	1.90 1.80 0.10 0.10 0.05 <0.05	(ppm) 2450 3383 109 76 227 223 116	20.6 3.8 9.6 12.0 † From 5 7.3	1.2 0.6 6.3 9.5 Saxby Saxby 17.6	14.8 1.4 2.5 6.3 1977 1977	16.9 16.1 23.8 20.6	55.7 59.7 40.0	11.4 22.2 27.4 3.3	(ppm) 391.9 67.6 9.6	(mg/g TOC)  128.9 187.9 109.0 76.0
1 2 3 4 5 6 7 8	(ft) 1980-2010 2180-2210 296210"-2' 336316"-8' 336319"-336' 378312"-378: 424310"-2' 496419"-496	SAMPLE TYPE  CT CT CG	1.90 1.80 0.10 0.10 0.05 <0.05 0.05 0.20	(ppm) 2450 3383 109 76 227 223 116 115	20.6 3.8 9.6 12.0 † From 5 † From 5 57.3 † From 5	1.2 0.6 6.3 9.5 Saxby Saxby 17.6	14.8 1.4 2.5 6.3 1977 1977 7.1	16.9 16.1 23.8 20.6	55.7 59.7 40.0 60.3	11.4 22.2 27.4 3.3	391.9 67.6 9.6 12.0	(mg/g TOC)  128.9 187.9 109.0 76.0
1 2 3 4 5 6 7 8	(ft)  1980-2010 2180-2210 296210"-2' 336316"-8' 336319"-3363 378312"-378	SAMPLE TYPE  CT CT C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1	(w+%) 1.90 1.80 0.10 0.10 0.05 <0.05 0.20 0.20	(ppm) 2450 3383 109 76 227 223 116	20.6 3.8 9.6 12.0 † From 5 7.3	1.2 0.6 6.3 9.5 Saxby 17.6 Saxby 11.0	14.8 1.4 2.5 6.3 1977 1977 7.1 1977 2.6	16.9 16.1 23.8 20.6	55.7 59.7 40.0 60.3	11.4 22.2 27.4 3.3	(ppm) 391.9 67.6 9.6 12.0	128.9 187.9 109.0 76.0

WELL: WELCOME LAKE #1

No.	INTERVAL (ft)	SAMPLE TYPE	TOC (wt%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT	AROM	ONS -(w+%)	ASHP	LOC	HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
										•		
1	3330-3630	СТ	1.25	804	4.5	4.1	2.9	23.1	50.3	19.6	56.3	64.3
2	3630-3930	CT	0.95	527	4.9	6.2	2.7	23.5	48.3	19.3	46.8	55.4
3	3930-4230	CT	1.30	1489	5.2	3.2	1.3	14.2	63.5	19.8	67.0	114.6
4	4230-4530	CT	1.00	1175	6.0	3.7	1.4	17.2	61.9	15.8	59.9	117.5
5	4530-4830	CT	0.95	550	5.3	8.5	0.6	14.7	49.4	0.0	50.1	57.9
6	4830-5130	CT	0.95	611	6.0	7.6	1.8	16.3	60.0	14.3	57.4	64.3
7	5130-5360	CT	1.10	603	7.6	9.4	4.4	24.2	57.9	4.1	83.2	54.8
8	5360-5540	CT	1.20	680	9.7	14.1	3.0	20.9	54.6	7.4	116.3	56.7
9	5540-5600	CT	0.80	700	11.8	10.8	2.7	17.5	51.6	17.4	94.5	87.5
10	5600-5900	CT	0.15	95	18.7	22.1	7.4	29.3	41.2	0.0	28.0	63.3
11	5900-6110	CT	0.25	610	28.5	10.4	1.3	16.5	49.4	22.4	71.3	243.8
12	6110-6410	CT	0.50	960	25.9	9.7	3.8	18.0	53.9	14.6	129.6	192.0
13	6410-6610	CT.	1.80	2354	19.2	9.1	5.6	20.8	57.4	7.1	344.8	130.3
14	6610-6910	CT	0.90	1342	22.2	10.0	4.9	18.1	51.5	15.5	199.9	149.1
15	6910-7210	CT	0.55	1123	31.8	9.3	6.3	16.8	65.3	2.3	175.1	204.1
16	7210-7510	CT	3.35	4912	13.6	4.7	4.6	11.6	71.6	7.5	456.7	146.6
17	7510-7510	CT	0.40	491	21.5	12.4	5.1	23.0	57.3	2.2	86.0	122.8

WELL: WILLS #1

	(ft)	TYPE	TOC (wt%)	(ppm)	HC YEILD (mg/g TOC)			ONS -(w+%)		LOC	HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
1	900-1200	CT	2.40	1064	3.3	4.6	2.8	26.5	49.7	16.4	78.7	44.3
2	1200-1500	CT	16.30	7520	2.4	1.3	3.8	20.0	55.5	19.4	383.2	46.1
3	1500-1800	CT	4.65	1487	2.6	4.2	4.0	24.5	61.6	5.7	122.0	32.0
4	1800-2100	CT	2.20	891	4.2	2.4	8.0	27.4	43.9	18.3	92.7	40.5
5	2100-2400	CT	2.85	1243	4.5	2.9	7.4	24.5	49.0	16.2	128.0	43.6
6	2400-2700	CT.	1.10	510	4.7	5.8	4.4	21.2	58.4	10.2	52.1	46.4
7	2700-3000	CT	1.10	683	8.2	6.4	6.8	24.1	50.5	12.2	90.2	62.1
8	3000-3300	CT	1.60	581	3.8	8.1	2.3	28.6	40.2	20.8	60.4	36.3
9	3300-3600	CT	1.05	348	2.0	1.6	4.4	27.7	54.3	12 <b>.</b> 0	20.9	33.1
10	3600-3900	CT	1.00	448	5.8	8.1	4.9	22.1	54.7	10.2	58.2	44.8
11	3900-4080	CT	0.75	399	7.4	4.7	9.3	23.3	51.8	10.9	55.9	53.2
12	4080-4200	CT	0.80	400	4.6	1.0	8.1	25.2	56.1	9.6	36.4	50.0
13	4200-4380	CT	1.35	622	5.7	7.0	5.3	29.1	52.6	6.0	76.5	46.1
14	4380-4700	CT	1.00	1617	1.3	3.3	4.9	9.2	79.6	3.0	13.3	16.2
15	4700-4850	CT	0.80	1164	1.8	8.4		20.7	64.4	2.4	14.6	
16	4850-5000	CT	0.80	926	1.8	8.0	7.9	24.7	52.5	6.9	14.8	11.6
17	4940-4990	CT	0.80	1040	1.7	5.4	7.8	18.4	62.2	6.2	13.7	13.0
18	5120-5150	CT	1.60	1075	12.6	10.6	8.2	19.9	59.4	0.0	202.1	67.2
19	5170-5310	CT	1.20	1196	16.0		11.2	17.0	62.7	4.3	191.4	99.7
20	5320-5620	CT	13.60	10409	7.5	4.1	5.7	18.5	65.5	6.2	1019.6	76.5
21	5620-5650	CT	5.85	2486	4.1	3.7	5.9	8.2	72.2	10.0	238.7	42.5
22	5740-5920	CT	2.20	699	1.2	3.3	0.5	19.8	71.3	5.1	26.6	31.8
23	5920-6010	CT	3.10	1213	6.2	8.0	7.9	19.1	62.4	2.5	192.7	39.1
24	6010-6120	CT	0.40	380	3.8	3.0	1.0	21.2	62.0	12.8	15.2	95.0

WELL: WILPINNIE

No. INTERVAL (ft)	SAMPLE TYPE	TOC (w†%)	EOM (ppm)	HC YEILD (mg/g TOC)	\$AT 	AROM	ONS -(wt%)	ASHP	LOC	HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
1 4622 2 4678'6" 3 4690 4 4707	SWC C C C	1.17 1.44 1.91 1.89	2232 1615 629 1965	106.1 46.2 10.9 45.8	51.3 35.8 28.1 37.8	4.3 5.4 4.9 6.2	9.6 20.3 17.2 21.3	14.9 37.0 44.3 31.9	19.9 1.5 5.5 2.8	1241.2 665.7 207.4 864.9	190.8 112.2 32.9 104.0
5 4711 6 4724'6" 7 4772 8 4820 9 4858 10 5075 11 5346 12 5626 13 5761 14 6073 15 7073'5" 16 7091'4"	C SWC SWC SWC SWC SWC SWC SWC SWC C	1.03 1.18 0.61 0.08 6.97 0.54 9.70 1.01 3.62 4.52 9.56	813 1243 550 433 163 1490 989 10300 2197 4321 2980 64	33.0 49.0 16.6 20.6 0.0 31.3 26.2 26.7 31.1 32.2 25.0 7.9	33.4 37.7 11.7 21.1 0.0 12.4 11.0 20.4 10.3 23.5 31.8 7.2	8.4 9.2 6.7 7.9 0.0 8.0 3.3 4.7 4.0 3.5 6.2	33.0 32.5 13.3 31.6 0.0 15.0 12.1 12.9 10.3 14.2 16.8 11.5	25.2 20.6 50.0 21.1 0.0 61.1 60.4 46.6 73.0 34.1 42.2 66.1		ra from (irdy 1981 101.2 125.6 0.0 2184.0 141.4 2585.7 314.1 1167.0 1131.9 753.0	90.2 71.0 203.8 153.6 183.1 106.2 217.5 119.4 65.9 67.9

WELL: WILSON #1

No.	INTERVAL	SAMPLE TYPE	TOC (wt%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT 	AROM	ONS -(w+%)	ASHP	LOC	HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
1	3730-3760	CT	0.83	1710	73.7	31.7	4.1	32.4	31.7		612.1	206.0
2	3890-3920	CT	8.20	1583	3.0	14.4	1.4	30.9	53.2		250.1	19.3
3	3920-3950	CT	1.04	1724	31.0	15.7	3.0	16.5	64.8		322.4	165.8
4	3950-3980	CT	0.76	2398	160.3	44.3	6.5	18.9	30.3		1218.1	315.5
5	4370-4400	CT	0.30	696	36.4	11.6	4.1	16.7	67.6		109.3	232.0
6	4520-4550	CT	0.77	1214	57.9	27.8	8.9	26.8	36.5		445.6	157.7
7	4550-4580	CT	1.13	2647	100.0	36.9	5.8	16.6	40.7		1130.0	234.2
8	4580-4610	CT	0.72	2970	204.2	42.3	7.2	10.1	40.4		1470.2	412.5
9	4670-4700	CT	0.44	550	10.9	5.0	3.7	21.8	69.6		47.8	125.0
10	4760-4790	CT	0.67	1347	28.7	9.9	4.4	6.5	79.2		192.6	201.0
11	4790-4820	CT	0.36	1172	54.0	14.0	2.6	12.0	71.3		194.6	325.6
12	4820-4850	CT	1.38	2680	61.2	24.9	6.6	14.5	53.9		844.2	194.2
13	5060-5090	CT	4.40	3563	6.0	4.2	3.2	5.2	87.5		263.7	81.0
14	5090-5120	CT	3.75	2874	3.1	1.5	2.6	4.7	91.2		117.8	76.6
15	5120-5150	CT	9.00	3050	1.4	1.2	2.8	5.1	90.9		122.0	33.9
16	5180-5210	CT	3.60	2639	3.7	3.0	2.0	6.9	88.2		131.9	73.3
17	5240-5270	CT.	3.42	2320	3.7	3.0	2.4	9.7	84.9		125.2	67.8

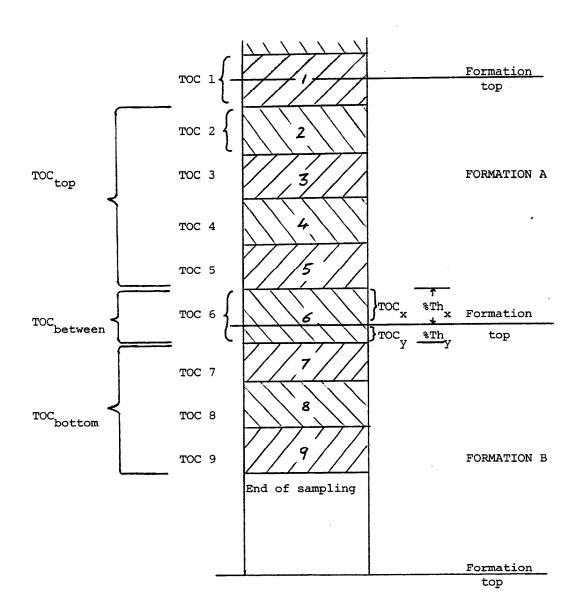
WELL: WIMMA #1

No.	INTERVAL (ft)	SAMPLE TYPE	TOC (w†%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT			ASHP		HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
1	1200-1500	CT	1.25	338	2.1	4.3	3.3	38.0	40.0	14.4	25.7	2 <b>7.</b> 0
2	2400-2700	CT	0.80	363	4.8	6.2	4.5	36.9	37.9	14.5	38.8	45.3
3	3300-3600	CT	2.50	1317	6.0	5.6	5.8	25.8	43.3	19.5	150.2	<b>52.7</b>
4	4200-4500	CT	1.20	750	7.1	5.9	5.4	23.7	48.1	16.9	84.8	62.5
5	4800-5100	CT	1.45	1000	10.8	9.3	6.3	25.8	45.5	13.1	156.1	69.0
6	5100-5400	CT	1.55	990	11.6	8.4	9.7	24.3	50.0	7.6	179.3	63.9
7	5400-5700	CT	1.15	622	10.4	13.0	6.3	19.4	52.6	8.7	120.1	54.1
8	5700-6000	CT	0.90	413	8.4	9.7	8.5	20.2	49.6	12.0	75.2	45.9
9	6000-6300	CT	1.00	501	5.8	7.2	4.4	16.7	60.3	11.4	58.1	50 <b>. 1</b>
10	6300-6600	CT	0.85	523	8.6	10.0	4.0	16.2	55.8	14.0	73.2	61.5
11	6600-6900	CT	0.40	378	16.6	13.0	4.6	17.0	46.3	19.1	66.6	94.6
12	6900-7200	CT	0.55	3880	109.3	13.2	2.3	6.4	61.3	16.8	601.0	705.0
13	7200-7500	CT	0.35	1273	12.0	2.0	1.3	4.7	77.2	14.8	42.0	364.0
14	7500-7600	CT	0.30	719	24.7	7.6		7.2	67.7	14.8	74.2	240.0
15	7650-7800	CT	1.90	2931	29.9	11.1	8.3	9.5	66.8	4.3	567.6	154.0
16	7800-7880	CT	0.65	1421	27.2	7.2	5.2	14.0	63.6	10.0	176.5	219.0
17	7890-8100	CT	0.10	255	32.9	8.4	4.5	11.4	59.4	16.3	32.9	255.0
18	8400-8700	CT	1.15	1449	25.3		11.3	11.0	51.5	17.4	291.2	126.0
19	8700-9000	CT	1.15	2129	17.0	5.0		4.8	75.8	10.2	195.7	185.0
20	9000-9300	CT	0.70	1344	20.7	5.9		5.9	73.7	9.6	145.2	192.0
21	9300-9466	CT	0.25	759	22.5	5.2		5.5	78.8	8.3	56.2	304.0
22	9900-10200		0.10	223	42.4	11.6		28.9	34.7	17.4	42.4	223.0
23	10400-10700		27.80	7	4.8	9.4		17.6	57.3	6.3	1322.3	25.3

WELL: YANKO #1

No.	INTERVAL (ft)	SAMPLE TYPE	TOC (wt%)	EOM (ppm)	HC YEILD (mg/g TOC)	SAT	AROM	ONS -(w+%)	ASHP	LOC	HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
							`					
1	700-1000	CT	1.95	664	3.9	7.0	4.3	33.5	44.6	10.6	75.1	34.1
2	1000-1300	CT	2.00	645	2.3	4.8	2.2	21.8	63.9	7.3	45.2	32.3
3	1300-1600	CT	2.70	840	3.0	4.9	4.9	30.1	45.5	14.6	82.3	31.1
4	1600-1900	CT	6.75	2762	2.9	3.5	3.7	17.2	69.2	6.3	198.8	40.9
5	1900-2200	CT	2.40	1176	4.1	4.6	3.7	23.5	59.4	8.8	97.6	49.0
6	2200-2500	CT	2.00	869	5.2	8.0	3.9	19.9	63.1	5.0	103.5	43.5
7	2500-2800	CT	1.95	888	4.8	7.1	3.5	23.8	51.0	14.6	94.0	45.5
8	2800-3100	CT	1.25	574	6.7	10.1	4.5	22.9	57.7	4.7	83.8	45.9
9	3100-3400	CT	1.20	654	5.2	5.8	3.8	16.8	66.1	7.4	62.8	54.5
10	3400-3700	CT	0.85	399	5.5	8.6	3.2	20.9	59.6	7.7	47.0	46.9
11	3700-4000	CT	1.05	438	4.8	8.0	3.5	19.5	56.8	12.3	50.4	41.7
12	4000-4300	CT	1.10	591	6.2	7.3	4.3	19.1	52.9	16.4	68.5	53.7
13	4300-4600	CT	1.15	857	5.5	4.5	2.9	8.7	70.0	13.9	63.4	74.5
14	4600-4900	CT	0.90	527	9.6	10.0	6.4	20.2	56.0	7.3	86.5	58.6
15	4900-5200	CT	0.85	532	8.6	9.0	4.8	18.0	54.9	13.2	73.4	62.6
16	5200-5500	CT	1.00	929	14.7	8.5	7.3	19.0	64.8	0.4	146.8	92.9
17	5500-5800	CT	1.50	1723	14.6	7.8	4.9	10.6	60.6	16.0	218.9	114.9
18	5800-6100	CT	6.35	2986	1.6	1.8	1.7	2.8	92.7	1.0	104.5	47.0
19	6100-6400	CT	7.15	2300	3.2	6.1	3.7	7.6	81.3	1.3	225.6	32.2
20	6400-6700	CT	12.30	3147	1.5	2.7	3.3	6.6	86.4	0.9	188.9	25.6
21	6700-7000	CT	3.80	1536	3.1	3.4	4.2	8.8	79.2	4.3	116.7	40.4

## WELL: YAPENI #


No.	INTERVAL (ft)	SAMPLE TYPE		EOM (ppm)	HC YEILD (mg/g TOC				ASHF		HC TOTAL (ppm)	EOM(per TOC) (mg/g TOC)
1 2 3	4955 4976 5725	SWC SWC SWC	1.05 0.10 1.10	1265 1015 1892	25.7 70.0 37.3	5.7	1.2	12.5 4.5 17.1	51.1	37.5	269.7 70.0 410.6	120.6 1015.0 172.0

#### APPENDIX B.

Technique for assigning TOC values to samples straddling formation boundaries.

<u>CASE A:</u> Adequate sampling of underlying and overlying formations.

EXAMPLE:



 $\frac{\text{PROBLEM}}{\text{x}}: \quad \text{To calculate TOC}_{\text{x}} \text{ and TOC}_{\text{y}} \text{ from TOC}_{1-9}$ 

#### SOLUTION:

TOC = Mean TOC value of samples lying entirely within Formation A, using:

$$TOC_{AV} = \frac{\text{in}}{\text{in}} (Th_{i} \times TOC_{i})$$

$$\frac{\text{Th}}{\text{total}}$$

TOC bottom = Mean TOC value of samples lying entirely within Formation B. calculated as above.

 $_{\rm between}^{\rm TOC}$  between = TOC value of that sample straddling the formation boundary.

% Th = Thickness percentage of that sample straddling the formation boundary which lies in Formation A.

TOC = TOC value of that part of the sample which lies in Formation A (to be calculated)

TOC = TOC value of that part of the sample which lies in Formation B (to be calculated).

Now: TOC =  $(\text{TOC}_{x} * \text{% Th}_{x}) + (\text{TOC}_{y} * \text{% Th}_{y}) \dots$  Eqn 1 between

Assuming:  $\frac{\text{TOC}_{\text{top}}}{\text{TOC}_{\text{bottom}}} = \frac{\text{TOC}_{\text{x}}}{\text{TOC}_{\text{y}}} \qquad \dots \qquad \text{Eqn 2}$ 

Then  $TOC_y = TOC_x \times \left(\frac{TOC_{bottom}}{TOC_{top}}\right)$  ... Eqn 3

Substituting this for TOC  $_{Y}$  in Eqn 1:

 $TOC_{between} = (TOC_{x} * % Th_{x}) + (TOC_{x} * TOC_{bottom}) * % Th_{y}$   $TOC_{top}$ 

 $\frac{\text{TOC}_{\text{between}}}{\text{between}} = \frac{\text{TOC}_{\text{x}} ( \text{ % Th}_{\text{x}} + \frac{\text{TOC}_{\text{bottom}}}{\text{TOC}_{\text{top}}} \text{ x % Th}_{\text{y}})$ 

$$TOC_{x} = \frac{\frac{TOC_{between}}{\text{% Th}_{x} + \text{% Th}_{y} \frac{(TOC_{bottom})}{TOC_{top}}} \dots Eqn. 4$$

$$TOC_{y} = TOC_{x} \times \left(\frac{TOC_{bottom}}{TOC_{top}}\right) \dots Eqn. 3$$

## APPENDIX C

Subdivided Analytical Results
*Denotes wells sampled at 30' intervals

TABLE 1a: Extractable Organic Matter yield & composition of samples 100% within the Murta Member.

W	ell Name	Formation Interval (ft)	Sample Interval	TOC { wt\$ }	EOM Yield (ppm)	H'c Yield (mg/g TOC)		-EOM ( Arom		tion (1 Asph	Loss on Column	H'C Total (ppm)	Sampl Type
		C112 C000	6140'-6260'	0.49	1498	28.7	7.8	1.6	6.1	83.1	1.5	140.8	ст
	oonatie 2 urralle 1	6113-6290 3212-3277	3221'	0.89	729	11.9	12.1	2.4	10.8	59.0	15.7	105.8	SWC
	uttapirrie 1	6001-6172	6039'	0.82	1100	33.4	18.8	5.9	12.9 38.7	50.0	2.4	274.0	SMC
Ð	ullingari l	4697-5002	4957	1.72 0.88	1673 1062	26.0 14.0	23.6 7.8	3.4	30.0	58.3			SWC
0	ullingari 5	4830-5015	4844 ' 4849 ' 6"	0.97	679	16.0	16.4	6.9	35.6	41.1			SWC
			4855	0.66	557	20.0	19.1	4.4	28.0	48.5 37.0			SWC
			4861	0.29	339 993	22.0 18.0	14.8	3.7 6.7	36.9	37.6			SWC
	•		4863 ' 4866 '	0.55	462	17.0	14.1	6.3	35.8	43.8			SWC
			4908	0.13	1500	736.0	60.9	2.9	29.0	7.2 54.0	sta	ined	SWO
			4978	0.87	649 678	12.0 25.0	10.0 13.1	6.0 8.2	30.0 34.4	44.3			SWC
_	11/	4942-5162	5006' 5002'5"-10"	0.90	540	18.2	22.8	7.5	11.1	46.1	12.5	163.6	C
υ	ullingari 11	4542-3102	5007 '5"-8"	0.60	707	26.9	15.7	7.1	19.5	34.6 38.9	23.1 16.0	161.3 339.2	c
			5039 '4" -8"	1.25	1105	27.1 36.4	19.4 24.1	11.3	14.4	43.3	8.3	527.8	č
		4700 5016	5055'7"-10" 4800'-4830'	1.45	1562 745	8.0	8.3	5.4	43.8	42.6			CT
D	Hullingari With 1	4788-5016	4883'	0.81	657	16.0	15.8	3.3	40.0	40.9			SWI
			49581	0.71	680	19.0	13.9	5.5	41.8 34.9	38.8 44.3			SHI
			4967' 4980'-5010'	1.38 8.40	798 5020	- 12.0 17.0	15.6 21.5	5.2	42.8	29.3		•	CT
	Tu taka A	5813-5971	5821	0.60	1488	34.5	11.2	2.7	8.7	55.7	21.7	206.8	SW
•	Ty Lake 4	3013-3311	5864	0.70	1190	38.8	19.5	3.3 4.3	14.3	39.1 40.6	23.8 29.9	271.3 412.5	SW
			5931	0.95	1910	43.4 53.7	20.7	6.0	10.0	52.7	10.6	376.0	SW
	Innamincka 3	4013-4197	5962' 4134'	0.70 0.86	1300	49.0	27.0	5.3	32.8	34.9		759.0	S¥
	Inneminicke 5	3604-3845	3703'3"-6"	1.95	2411	39.1	22.3	9.2	20.1	41.6 25.2	6.8	759.0	SH
	didman 2	4784-4938 4588-4802	4863 ' 4644 '	0.88	1580	58.0 38.0	25.2 17.2	7.4	44.7	35.9			Şl
,	Marabooka 1	4588-4602	4759'8"	1.90	1885	28.0	20.2	7.9	29.4	42.5		-	C
			4792'4"	2.65	3318	31.0	13.6 27.6	11.2	20.8	52.8 34.7	8.1	397.8	CT
	Merrimelia 6	5007-5244 5157-5326	5100'5150' 5160'-5320'	0.80	1093 1495	49.7 8.0	40.5	7.5	16.6	29.2	6.2	71.7	£1
	Merrimelia 7 Moomba 18	5646-5800	5703	0.62	370	15.0	17.1	7.7	39.3	35.9			C
			5796	1.01	772 1184	19.0 23.9	19.3 10.7	6.1 4.5	41.9	32.7 35.5	41.9	179.4	ŠW
,	Moorari 3	5956-6126	5978 ' 6024 '	0.40	809	17.8	8.2	0.6	5.0	37.7	48.5	71.1	S
			6094	0.90	1017	12.3	9.3	1.6	6.7 17.1	52.1 48.6	30.3 18.9	110.9 182.0	SI Si
	Mudera l	4764-4939	4930' 4416'	0.70	1181 2168	26.0 172.9	11.2 63.6	4.2	9.2	9.6	13.4	1469.6	Sk
1	Naccowlah 1	4392-4670	4634	6.71	1233	27.1	7.8	7.8	20.0	46.7	17.7	1817.2	· S¥
. 1	Namur 2	5245-5431	5407	1.52	1693	43.0 45.0	30.8 34.6	7.6 11.6	34.3	27.3 19.5			č
			5409° 5412°6°	2.82	2758 4373	81.0	36.9	12.3	28.4	22.4			Č
i			5419 6	3.90	4528	39.0	23.4	10.1	35.7	30.8 18.1			ç
			5421'9" 5424'3"	2.94		54.0 34.0	35.5 18.3	12.4	32.7	37.5			č
	Nappacoongee 2	4268-4458	4324	4.68 0.64	669	29.0	18.5	9.3	35.2	37.0			SI C
	Mappacoongee 2		4359'8"	1.58		76.0 27.0	44.3 25.4	8.3 5.7	28.5 34.8	18.9			SI
	Pinna 1	4552-4710 4443-4622	4552° 4470°	1.16		48.0	38.5	9.5	32.8	19.2			S
	Strzelecki 3	4443-4022	4480'-4510'	1.88	884	22.0	38.6	8.7	33.2	19.5 28.9		1207.7	S.
	Strzelecki 4	4489-4659	4564 ' 4546 '	0.60	3552 1551	201.3 89.9	28.0 33.7	6.0	13.9	23.9	21.6	629.5	Ś
:			45081	1.10		49.7	25.6	5.3	15.9	24.9 47.1	28.3 13.4	547.2 150.0	S
	Strzelecki 5	4473-4641	4500'-4600'	0.85		17.7 54.9	14.2	7.3 5.4	18.0	37.6		538.0	C
	Tartulla 1	5099-5283	5180'-5190' 5250'-5270'	0.98		49.1	17.8	3.2	23.0	45.3	10.7	334.0	Č
	Wackett 1	4402-4647	4410'-4440'	0.97	1877	69.1	32.8	2.9		36.1 55.9		670.1 208.2	C
ì			4600'-4630' 5570'-5700'	0.90	836 414	23.1 20.2	21.0	3.9				101.1	c
	Wantana 1 Wareena 1	5550-5736 3209-3501	3231	0.22	300	17.3	11.6	1.1	11.6			38.1 665.7	S
	Wilpinnie 1	4657-4874	4678'6"	1.44	1615	46.2	35.8 28.1	5.4 4.9	20.3	37.0 44.3	1.5	207.4	
3	•		4690' 4707'	1.91		10.9 45.8	37.8	6.2				864.9	0
:			4711'	1.0		33.0	33.4	8.4	33.0	25.2			0
2			4724'6"	1.18	1243		37.7 11.7	9.2				101.2	
-			4772° 4820°	0.6			21.1	7.9	31.6	21.1			
G			4858*	0.0	163		1	nsuff:	cient	extrac1		269.7	
,	Yapeni 1	4823-4966	4955	1.0	5 1265 7 1135		16.7 10.3	4.6 5.0				173.7	, ,
	*Bycoe 1 *Gunna 1	3882-4122 3936-4173	3960'-3990' 3990'-4020'	0.7	7 1135 B 2534	46.1	26.6	7.0	5 29.9	35.9	3	866.7	' (
A B	-OURING 1		4050'-4080'	1.8	9 2240	26.2	15.9	6.				495.0 709.9	) (
	*Naccowlah Sth 1	4428-4691	4440 '-4470 ' 3770 '-3800 '	0.8 1.0			45.3 13.3	8.	3 25.0 7 35.6			116.3	3 (
	*Richie 1 *Tinpilla 1	3714-3951 3886-4112	3890'-3920'	1.1	0 2044	12.3	3.8	2.1	8 75.5	17.	9	134.9 684.9	) (
	inditie T	A000-411E	3950'-3980'	1.9	9 2716	34.4	18.3					289.7	
B													
			3980'-4010' 4040'-4070'	1.2			6.8	4.	6 18.	70.	1	112.4	

OCTOBER, 1984 MG/111/24

TABLE 1b: Extractable Organic Matter yield & composition of samples >75% within the Murta Member.

No	Well Name	Formation Interval	% of Sample	Sample Interval (ft)	TOC (wt%)	EOM Yield (ppm)	H'c Yield (mg/g TOC)	Sat	EOM Arom	Compost ONS	tion (% Asph	Loss on Column	н'С Total (ppm)	Sample Type
1 2 3 4 5A 5B 6 7 8 9 10 11 12 13A 13B	Alkina 1 Belah 1 Dilchee 1 Hume 1 Jackson 1 Jackson Sth 1 Karwona East 1 Tanbar Nth 1 Tartulla 1 Wills 1 **Gunna 1 **Richte 1 **Wilson 1	5002-5122 4382-4591 4987-5173 4683-4881 3604-3845 3538-3782 4777-4990 5724-5448 5099-5283 4106-4306 3936-4173 3714-3951 3733-3976	96.97 76.40 96.11 94.70 78.00 83.48 95.24 86.19 78.80 86.67 90.00 86.67	5000-5066 4400-4650 5000-5180 4720-4890 3600-3650 3650-3900 3500-3730 5070-5280 5070-5280 3930-3960 3710-3740 3730-3760 3950-3980	0.89 0.75 0.85 0.85 0.86 0.78 0.63 0.57 0.93 0.80 1.87 1.46 0.83 0.76	1374 732 722 628 572 666 883 1528 837 1459 400 1261 1333 1710 2398	18.1 15.6 9.3 9.5 6.0 10.0 32.6 66.0 38.0 46.6 4.6 12.5 73.7 160.3	8.0 11.8 5.2 8.6 7.4 12.1 19.3 20.9 24.6 1.0 10.0 3.8 31.7 44.3	3.7 4.2 5.7 3.5 3.7 0.7 9.5 6.4 5.0 8.1 8.6 4.1 6.5	15.2 12.6 15.5 13.9 11.7 13.0 22.5 17.3 24.9 25.2 30.0 30.8 32.4 18.9	58.1 56.5 59.8 54.1 72.2 62.1 41.6 55.6 50.3 41.4 56.1 51.4 63.7 31.7 30.3	15.0 15.0 13.8 19.9 5.0 12.1 7.1 3.7 6.5 4.0	160.8 117.1 78.7 78.5 63.4 85.2 254.3 415.5 216.7 433.4 234.4 73.3 612.1 1218.1	CT CT CT CT CT CT CT CT CT

TABLE 1c: Extractable Organic Matter yield & composition of samples <755 within the Murta Member.

		Formation	% of	Sample	TOC	EOM	H'c Yield		EOM				H.C	Samp1
•	Well Name	Interval (ft)	Sample	Interval (ft)	(wts)	Yield (ppm)	(mg/g TOC)	Şat	Aron	ONS	Asph	Loss on Column	Total (ppm)	Тур
	Alkina 1	5002-5122	52.83	5066-5172	1.98	3997	9.7	2.9	1.9	4.5	87.0	3.6 4.8	191.9 87.8	CT CT
	Barrolka East 1	4894-4918	2.00	4600-4900	0.84	655	10.5	9.5	3.9	18.2	63.6		146.5	čŤ
A B	Barroika Cast 1	4034-4310	7.50	4900-5140	0.78	1809	18.8	5.3	2.8	5.3	84.2	2.5 7.1	140.5	CT.
,	Belah 1	4382-4591	6.00	4100-4400	1.65	1218	10.3	8.7	5.2	12.6	66.4	5.2	144.6	č
	Coonatie 2	6113-6290	12.86	5930-6140	0.96	939	15.1	11.0	4.4	13.3	66.1	6.6	126.6	Č.
3	Coonacte 2	0113-0230	10.00	6260-6560	0.28	549	45.2	16.6	2.9	10.6	63.4 32.4	30.6	80.1	č
ì	Corkwood 1	4416-4603	28.00	4200-4500	1.00	673	8.0	3.5	8.4	3.0		11.2	199.8	č
ì	COTKWOOD 1	4410-4000	34.33	4500-4800	0.85	693	23.5	21.8	7.0	33.4	26.6 41.6	13.6	68.1	č
•	Daralingie 4	4970-5158	43.33	4800-5100	0.90	480	7.6	9.3	4.9	30.6	57.7	13.6	96.2	č
	Dilchee 1	4987-5173	4.64	4720-5000	0.60	708	16.0	7.0	6.6	15.1	41.9	8.2	196.4	č
	Gilpeppee 2	5467-5576	36.33	5400-5700	1.05	714	18.7	18.9	8.6	22.4	59.0	5.2	92.9	č
	Hume 1	4683-4881	11.94	4410-4720	0.95	553	9.8	12.2	4.5	19.0 19.5	52.9	7.9	153.9	č
A	Ingella 1	5430-5514	7.69	5190-5450	1.00	781	15.4	12.6	7.1	3.5	83.5	2.1	339.1	č
8	ingee i		22.07	5450-5740	1.70	3116	19.9	6.7	4.2	10.7	63.1	18.9	84.3	Č
A	Jack Lake 1	5654-5828	15.33	5400-5700	1.16	1155	7.3	5.3	2.0	12.1	51.5	25.9	119.3	č
ĺΒ	Gack Lune 1		42.67	5700-6000	0.33	1136	36.1	8.6	1.9	17.9	54.0	9.6	203.8	č
,	Jackson Sth 1	3538-3782	11.35	3740-4110	0.72	1107	28.3	11.1	7.3 5.3	18.0	67.1	0.2	96.7	č
3	Karmona East 1	4777-4990	4.33	4490-4790	0.97	658	10.0	9.4	5.3 4.6	17.2	63.2	5.2	76.7	- 6
A	McKinlay 1	3902-4071	69.08	3855-4007	0.80	533	9.6	9.8 14.2	2.9	14.2	53.1	15.6	223.9	i
48			33.16	4007-4200	1.30	1310	17.2	16.4	7.4	17.0	54.8	4.4	184.1	C
5	Merrimelia 6	5007-5244	37.20	4850-5100	1.35	773	13.6	23.8	7.0	23.1	36.4	9.7	272.4	C
A	Merrimelia 7	5157-5326	1.30	4930-5160	1.15	884	23.7 6.2	24.3	4.4	9.0	53.2	9.1	37.4	(
58			2.00	5320-5620	0.60	1302		10.5	4.7	22.1	53.0	9.7	164.7	
,	Morney 1	3389-3402	4.33	3200-3500	1.15	1083	14.3 4.7	6.4	3.1	19.6	56.0	14.9	39.6	
3	Spencer 2	4317-4452	22.00	4200-4350	0.85	417		7.2	3.5	8.6	67.1	13.6	212.0	
,	Tanbar Nth 1	5724-5848	6.00	5830-6130	0.88	1982	24.1 17.6	3.9	4.3	8.8	72.7	10.3	472.5	(
ó	Tartulla 1	5099-5283	2.50	5280-5400	2.68	5762		14.4	10.3	22.7	52.6	0.0	87.5	
18	Wantana 1	5550-5736	11.76	5400-5570	0.80	354	10.9 25.4	15.2	8.3	24.8	43.6	12.1	152.3	(
18			12.00	5700-6000	0.60	648		7.4	3.1	11.7	73.6	4.1	82.8	
2	Wareena 1	3209-3501	70.00	3200-3230	0.81	788	10.2 18.7	22.1	7.4	29.3	41.2	0.0	28.0	
3	Welcome Lake 1	5600-5754	51.33	5600-5900	0.15	95	5.7	7.0	5.3	29.1	52.6	6.0	76.5	
4	Wills 1	4106-4306	58.89	4200-4380	1.35	622		13.0	4.6	17.0	46.3	19.1	66.6	(
5	Vimma 1	6612-6787	58.33	6600-6900	0.40	378	16.6	4.5	2.9	8.7	70.0	13.9	63.4	Ċ
64		4493-4731	35.67	4300-4600	1.15	857	5.5		6.4	20.2	56.0	7.3	86.5	
6B			43.67	4600-4900	0.90	527	9.6	10.0	5.3	33.9	44.1		159.8	Ċ
27	*Maccowlah Sth 1	4428-4691	40.00	4410-4440	0.89	726	18.0	16.7	5.3	33.9	-4.1			

TABLE 2a: Extractable Organic Matter yield & composition of samples 100% within the Westbourne Fm.

n~	Well Name	Formation Interval (ft)	Sample Interval	TOC (wt%)	EOM Yield (ppm)	H'c Yield (mg/g TOC)	Sat		Compos: ONS	ition (9 Asph	Loss on Column	H'C Total (ppm)	Sampl Type
1	Alkina 1	5490-5818	5492'-5790'	. 0.41	635	12.4	6.2	1.8	22.6	56.5	12.9	50.8	СТ
2	Barrolka East 1	5362-5705	5390'-5690'	0.48	857	24.8	9.3	4.6	12.7	67.2	6.3	119.1	ĊŤ
3	Coonatie 2	6507-6913	6560'-6860'	0.29	609	37.4	14.5	3.3	12.5	64.1	5.6	108.4	- CT
4	Curralle 1	3586-3770	3669'	0.72	830	11.0	5.3	4.2	11.6	-58.9	0.0	78.9	SWC
5	Dullingari Nth 1	5310-5484	5341'	- 0.47	757	32.0	15.1	4.8	51.5	28.6	• • •		SWC
5 6	Ingella 1	5904-6285	6200 ' - 6280 '	0.45	862	25.2	7.7	5.5	13.0	67.7	6.1	113.5	CT
7A	Jackson 1	4169-4446	4176'-4345'	0.35	2430	510.8	65.5	8.1	12.8	8.2	5.4	1787.7	CT
7B			4385 '3"-6"	1.40	2059	73.5	41.2	8.8	18.5	28.9	2.6	1029.0	С
7C			4400'1"-2"	2.90	5097	41.7	20.0	3.7	9.8	55.9	10.6	1208.0	С
8	Jackson South 1	4120-4422	4120'-4380'	0.76	1122	42.7	24.2	4.7	12.4	50.0	8.6	324.2	CT
9A	Kidman 2	5148-5330	5170'	0.91	1022	22.0	13.5	6.4	20.5	59.6			SWC
9B			5310'	0.77	1255	43.0	18.4	7.8	28.2	45.6			SWC
10	Merrimelia 7	5554-5933	5620'-5920'	0.80	1385	2.5	10.5	3.8	9.1	65.8	10.8	19.8	CT
11A	Moorari 3	6330-6770	6390'	0.40	1781	81.5	14.6	3.7	10.0	40.2	31.5	325.9	SWC
11B	•		6550'	1.60	1705	22.4	14.8	6.2	10.5	58.2	10.3	357.8	SWC
11C			6750'	1.20	2458	33.8	11.8	4.7	8.3	62.1	13.1	405.5	SWC
12	Mt Howitt 1	4045-4451	4094'	0.39	1200	14.0	4 .			5.4			С
13A	Strzelecki 3	4885-4997	4894 '	0.91	841	42.0	18.3	26.7	16.7	38.3			SWC
13B			4919'	0.66	1220	37.0	9.6	10.4	37.4	42.6			SWC
14	Strzelecki 4	4893-5074	5050'	0.10	2207	117.0	5.0	0.3	2.5	72.2	20.0	117.0	SWC
15	Tanbar Nth 1	6123-6582	6130'-5480'	1.69	2482	11.2	5.1	2.5	6.5	77.4	8.6	188.7	CT
	Tartulla 1		5620'-5650'	0.33	2409	62.8	6.1	2.5	11.0	72.8	7.6	207.0	CT
		5578-6005	5700'-6000'	1.20	836	11.6	10.0	6.7	22.0	54.7	6.6	139.7	CT
16C			5930'-5950'	0.53	2982	35.4	4.2	2.1	15.7	58.1	19.9	188.0	CT
17	Wackett 1 .	4958-5135	5100'-5130'	0.81	988	32.2	22.6	3.8	17.0	52.7	3.9	260.9	CT
18	Wareena 1	3678-4093	3950 '-4000 '	1.34	958	6.0	6.3	2.1	10.3	72.1	9.3	80.5	CT
19	Wilpinnie 1	5070-5313	5075'	6.97	1490	31.3	12.4	8.0	15.0	61.1	3.5	2184.0	SWC
20	*Bycoe 1	4437-4784	4670'-4700'	0.72	1126	25.5	9.1	7.2	23.3	60.4		183.6	CT
21	*Chookoo 1	4998-5350	5250'-5280'	1.54	387	9.2	25.6	11.0	43.1	20.3		141.5	CT
22A	*Naccowlah Sth 1	4949-5304	5100'-5130'	1.96	1064	11.3	15.1	5.8	37.3	41.8		222.4	CT
22B	401.11.	4074 4506	5130'-5160'	2.78	1064	7.0	12.1	6.1	40.5	41.3		193.8	CT
23	*Richie 1	4274-4596	4550'-4580'	1.04	3120	22.8	3.0	4.6	18.9	73.5		237.1	CT
24A	*Tinpilla 1	4438-4764	4640'-4670'	0.81	2840	80.3	17.1	5.8	54.9	22.1		650.3	CT CT
24B	*1127 1	4000 4000	4670'-4700'	1.06	2558	28.5	7.4	4.4	16.0	72.1		301.8	CT
25A 25B	*Wilson 1	4296-4600	4370'-4400'	0.30	696	36.4	11.6	4.1 8.9	16.7 26.8	67.6 36.5		109.3 445.6	CT
258 250			4520'-4550' 4550'-4580'	0.77 1.13	1214 2647	57.9 100.0	27.8 36.9	5.8	16.6	40.7		1130.0	CT
236			4330 -4360	1.13	204/	100.0	30.9	7.0	10.0	40./		1130.0	U I

TABLE 2b: Extractable Organic Matter yield & composition of samples >75% within the Westbourne Fm.

No	Well Name	Formation Interval	% of Sample	Sample Interval	TOC	EOM	H'c Yield				tion (1	)	H'C	Sample
	···	(ft)	замрте	(ft)	(wtS)	Yield (ppm)	(mg/g TOC)	Sat	Arom	ONS	Asph	Loss on Column	Total (ppm)	Туре
	Gilpeppee 2	5908-6260	86.67	6000-6300	0.90	1249	33.4	10.7						
	Hume 1	5123-5423	97.29	5115-5410	0.75	667	13.7	18.7 9.7	5.4	21.4	50.8	3.7	300.8	CT
	ingella 1	5904-6285	98.67	5900-6200	0.50	697	13.5		5.7	13.3	59.5	11.8	102.7	CT
	Jack Lake 1	6043-6320	85.67	6000-6300	0.12	322		6.6	3.1	9.3	70.1	10.9	67.4	CT
	Karmona East 1	5302-5650	99.00	5300-5500	0.53		37.0	10.5	3.3	14.2	47.7	24.3	44.4	CT
	Welcome Lake 1	5950-6211	76.19			914	23.5	9.4	4.2	12.9	65.2	8.3	124.3	CT
	Wimma 1	7011-7462	87.33	5900-6110	0.25	610	28.5	10.4	1.3	16.5	49.4	22.4	71.3	ČŤ
	Yanko 1			7200-7500	0.35	1273	12.0	2.0	1.3	4.7	77.2	14.8	42.0	ČŤ
	Janko I	4987-5437	79.00	5200-5500	1.00	929	14.7	8.5	7.3	19.0	64.8	0.4	146.8	čŤ

TABLE 2c: Extractable Organic Matter yield & composition of samples <75% within the Westbourne Formation

No	Well Name	Formation Interval	% of Sample	Sample Interval	TOC (wt%)	EOM Yleld	H'c Yfeld		E0				н'с	Sample
		(ft)		(ft)	(400)	(ppm)	(mg/g TOC)	Sat	Arom	ONS	Asph	Loss on Column	Total (ppm)	Туре
1	Alkina 1	5490-5818	2.20	5816-5907	0.24	589	12.0	4.4	0.5	19.1				
2	Barrolka East 1	5362-5705	11.20	5140-5390	0.55	927	14.5	4.5	4.1	11.4	62.7	13.2	28.9	CT
3A	Coonatie 2	6507-6913	17.67	6260-6560	0.28	649	45.2	16.6	2.9	10.6	78.9	1.0	79.7	CT
3B			21.20	6860-7110	0.38	740	140.0	8.5	63.4	13.4	63.4	6.6	126.6	CT
4	Gilpeppee 2	5908-6260	30.67	5700-6000	2.20	3204	22.0	8.0	7.1	16.2	63.7 68.7	11.0	532.0	CT
5	Hume 1	5123-5423	8.13	5410-5570	1.25	855	10.3	9.4	5.6	17.0		0.0	483.7	CT
6	Ingella i	5904-6285	7.14	6280-6350	0.15	417	42.5	10.3	5.0	13.8	53.8	14.2	128.3	CT
7	Jack Lake 1	6043-6320	6.67	6300-6600	0.05	206	81.6	13.2	6.6	15.4	51.8	19.1	63.8	CT
BA	Jackson 1	4169-4446	10.33	3900-4200	0.35	663	36.1	14.5	4.6	15.4	52.2	12.6	40.8	CT
88			57.71	4345-4520	0.70	2316	187.7	51.1	5.6	10.7	54.9 21.4	11.0	126.3	CT
9	Jackson Sth 1	4120-4422	38.18	4380-4490	0.88	2537	34.0	9.8	2.0	12.4		11.2	1313.7	ÇT
10	Karmona East 1	5302-5650	62.50	5500-5740	0.64	1245	29.8	8.6	6.7	13.6	61.7	14.1	299.4	CT
IIA	Merrimella 7	5554-5933	22.00	5320-5620	0.60	1302	6.2	24.3	4.4	9.0	64.7	6.4	190.5	CT
118			13.00	5920-6020	2.65	4883	1.4	3.4	4.1	3.6	53.2	. 9. 1	37.4	CT
L2A	Merrimelia 6	5452-5831	56.00	5320-5620	0.70	860	72.5	35.3	23.7	8.0	86.5	2.4	36.6	CT
128			70.33	5620-5920	1.05	1754	50.1	19.6			74.2	16.2	507.6	CT
13	Morney 1	3844-4049	68.33	3800-4100	1.00	919			10.4	12.6	48.1	9.3	526.0	CT
14	Strzelecki 5	5028-5120	30.67	5000-5100	1.15	928	15.3 15.4	11.3	5.4	20.8	55.6	6.9	153.5	CT
SA.	Tanbar Wth 1	6123-6582	2.33	5830-6130	0.88	1982		14.3	4.8	10.2	49.9	12.8	177.3	CT
5B	=	-110 1002	53.68	6480-6670	0.38	619	24.1	7.2	3.5	8.6	67.1	13.6	212.0	CT
64	Tartulla 1	5578-6005	40.67	5400-5700	0.40		22.3	11.2	2.5	13.3	64.4	8.6	84.8	CT CT
68			1.67	6000-6300	2.45	476	26.2	12.0	10.0	21.5	48.3	8.2	104.7	CT
7	Welcome Lake 1	5950-6211	33.67	6110-6410		4566	21.2	3.9	7.5	9.2	73.6	5.8	520.6	CT
8A	Wills 1	4531-4794	52.81	4380-4700	0.50	960	25.9	9.7	3.8	18.0	53.9	14.6	129.6	ĊŤ
88		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	62.67	4700-4850	1.00	1617	1.3	3.3	4.9	9.2	79.6	3.0	13.3	ĊŤ
9	Winna 1	7011-7462	63.00	6900-7200		1164	1.8	8.4	4.1	20.7	64.4	2.4	14.6	ČŤ
Ó	Yanko 1	4987-5437	71.00	4900-7200	0.55	3880	109.3	13.2	2.3	6.4	61.3	16.8	601.0	ČŤ
1	*W17 son 1	4296-4600	66.67		0.85	532	9.6	9.0	4.8	18.0	54.9	13.2	73.4	čŤ
-		7670-4000	00.07	4580-4610	0.72	2970	204.2	42.3	7.2	10.1	40.4		1470.2	ČŤ

No	Well Name	Formation Interval (ft)	Sample Interval (ft)	TOC (wt%)	EOM Yield (ppm)	H'c Yield (mg/g TOC)	Sat	-EOM Arom		ition (1 Asph	Loss on Column	H'C Total (ppm)	Sample Type
1	Chandos 1	5900-6155	5925	16.30	6153	6.0		.4		3.6			C
2A	Cumbroo 1		5781 5707	0.54 25.30	1473 4230	11.0 3.0		1.1 3.7		5.9 l.3			Č
2B 3	Curalle 1	3970-4240	5797 4217	1.42	1686	44.9	34.1	3.7	13.8	42.0	6.4	637.1	SWC
. 4	Cuttapirrie 1	6896-7158	7052	1.24	2896	57.7	21.4	3.3	13.0	58.3	4.0	715.5	SWC
5	Della 1	5420-5634	5624	0.98	2400	114.0	43.0	3.5	39.7	13.8			C
6A	Dullingari Nth 1	5787-5932	5794	0.59	933	44.0	22.1	5.8	23.1	49.0			SWC
6B	-		5880-5910	1.26	1448	32.0	17.3	10.5	29.0	43.2			CT
6C		5510 5751	5929	0.56	915	51.0	26.3	5.1	26.2 34.8	42.4 46.4			SWC SWC
7A	Kidman 2	5612-5764	5679 5755	1.72 0.76	3548 2155	39.0 80.0	12.9 23.8	5.9 4.4	16.6	55.2			SWC
7B 8	Marabooka 1	5553-5677	5658	<0.05	213	59.0	7.5	6.3	49.9	36.3			SWC
9A	Moorari 3	6886-7214	7014	2.10	5965	81.2	19.6	9.0	11.6	58.3	30.6	1705.7	SWC
98	11001 411 5	0000 / 22 /	7077	0.65	4240	461.2	59.8	10.9	6.9	10.5	11.9	2997.6	SWC
9C			7190	0.80	1771	61.8	17.1	10.8	15.5	38.6	18.0	494.2	SWC
10	Mt Howitt 1	4558-4854	4659	1.60	4173	30.0		1.6		8.4	00 6	277 0	C
11A	Mudera 1	5736-5849	5834	0.75	1689	36.9	15.5 9.8	0.9	13.4 19.3	46.6 45.9	23.6 24.3	277.0 163.6	SWC SWC
11B	M . 43 - 3 O	E025 5246	5810 5322	0.75 1.42	1558 2740	21.8 84.0	25.9	17.8	30.4	25.9	24.3	103.0	SWC
12	Mudlalee 2 Naccowlah 1	5235-5346 5308-5502	5348	2.19	2460	40.8	19.3	17.0	14.6	47.8	1.3	892.8	SWC
13A 13B	Naccowian 1	3300-3302	5487	0.70	1076	33.0	14.8	6.7	19.5	41.6	17.4	231.3	SWC
130			5460-5500	1.05	1568	19.1	9.4	3.4	17.7	65.1	4.4	200.7	CT
14	Nappacoongie 2	5208-5373	5367	15.40		36.0	20.5	3.9	31.7	43.9			C
15	Jrientos 1	5300-5553	5443	0.31	430	24.0		7.4		2.6			C
16A	Strzelecki 3	5322-5527	5336	7.05	7945	48.0	22.5	20.1	36.1	21.3			SWC
16B			5400	3.74	6565	95.0	37.0 24.7	17.0	29.7 30.2	16.3 13.5			SWC CT
160			5440-5470 5509	4.50 0.86	4912 940	42.0 55.0	21.1	13.6	30.2	19.1			SWC
16D	Strzelecki 4	5397-5524	5423	1.95	4439	57.6	17.8	7.5	17.2	34.5	23.0	1122.9	SWC
17A 17B	Strzelecki 4	3331-3324	5404	1.15	2345	84.2	32.6	8.7	23.1	33.1	2.5	968.4	SWC
17C			5490	1.10	1539	63.2	36.2	9.0	24.8	30.0	0.0	695.6	C
18	Strzelecki 5	5396-5532	5400-5500	3.70	4208	16.9	8.4	6.4	9.2	69.2	6.8	624.3	CT
19A	Tartulla 1	6061-6290	6070-6100	1.10	3874	52.5	10.2	4.7	13.3	55.5	16.1	577.0	CT
19B			6180-6200	1.32	3066	45.5	13.2	6.4	19.6	58.1	2.7	601.0	CT
20	Thunda 1		6165	1.15	1753	14.0	7.3	4.6	9.1	0.6 76.0	3.0	853.5	C CT
21A	Wackett 1	5358-5572	5360-5390 5510-5570	5.50 1.01	7173 1702	15.5 70.6	36.3	5.6	19.5	36.2	2.3	713.1	ĊŤ
21B 22A	Wareena 1	4148-4372	4320-4370	1.98	1684	16.2	13.7	5.3	17.0	62.4	1.6	320.0	ĊŤ
22B	wareena 1	4140-43/2	4333	4.68	5379	41.4	27.9	8.1	23.9	37.9	2.2	1935.8	SWC
22C			4168	1.69	2636	46.5	23.3	6.5	16.0	37.7	16.5	785.6	SWC
23	Wills 1	5112-5223	5120-5150	1.60	1075	12.6	10.6	8.2	19.9	59.4	0.0	202.1	CT
24A	Wilpinnie 1	5600-5787	5626		10300	26.7	20.4	4.7	12.9 10.3	46.6	15.4 2.4	2585.7 314.1	SWC SWC
24B	112	7615 7007	5761	1.01 1.90	2197 2931	31.1 29.9	10.3	4.0 8.3	9.5	73.0 66.8	4.3	567.6	CT
25A 25B	Wimma 1	7615-7897	7650-7800 7800-7880	0.65	1421	27.2	7.2	5.2	14.0	63.6	10.0	176.5	CT
26	Yapeni 1	5693-5747	5725	1.10	1015	70.0	5.7	1.2	4.5	51.1	37.5	70.0	SWC
27	*Bycoe 1	4830-4994	4940-4970	1.31	1434	15.3	7.2	6.8	19.6	66.3		200.8	CT
28	*Chookoo 1	5401-5578	5460-5490	3.60	4164	19.2	7.8	8.8	26.7	56.7		691.4	CT
29*	*Gunna 1	4845-5001	4890-4920	0.95	1966	48.2	14.8	8.5	23.6	53.2		458.0	CT CT
25		F262 FF26	4950-4980	1.58	3570	89.5	29.0 9.8	10.6	23.0 28.0	36.4 53.4		1413.4 231.9	CT
30A	*Naccowlah Sth 1	5363-5505	5370-5400 5400-5430	1.63	1247 1187	14.2 18.2	14.3	8.2		45.7		266.9	ČŤ
30B 30C			5460-5490		1156	17.9	11.5	8.6		57.4		232.3	ČŤ
31A		4702-4814	4730-4760	1.20		62.1	25.1	9.5	26.2	39.1		745.7	CT
31B	ATOMIC A		4760-4790	1.81	2705	32.0	12.5	8.9	18.7	57.9		578.7	CT
32A	*Tinpilla 1	4800-4984	4820-4850	0.81	957	29.1	15.4	9.2		52.6		235.3	CT
32B			4850-4880		2851	23.6	10.7	8.0	6.8	74.5		533.3	CT
32C		****	4910-4940	2.18		16.0	5.2	4.8		78.3		349.0 47.8	CT CT
33A		4660-4870	4670-4700	0.44		10.9	5.0	3.7 4.4	21.8	69.6 79.2		192.6	CT
338			4760-4790 4790-4820		1347 1172	28.7 54.0	9.9 14.0	2.6		71.3		194.6	ĊŤ
33C 33D			4820-4850	1.38	2680	61.2	24.9	6.6		53.9		844.2	ĊŤ
230			7020-4030	1.30	_500	0212						· · · -	

TABLE 3b: Extractable Organic Matter yield & composition of samples >75% within the Birkhead Formation

No	Well Name	Formation	% of	Sample	toc	EOM	H'c Yield		EOM	Composi	ition (%	)	H'C	Samp)e
		Interva? (ft)	Sample	Interval (ft)	(wts)	Yield (ppm)	(mg/g TOC)	Sat	Arom	ONS	Asph	Loss on Column	Total (ppm)	Type
1	Alkina 1	5910-6216	98.29	5907-6184	4.00	6215	24.9	10.8	5.2	9.5	67.8	6.8	994.6	ст
2	Barrolka East 1	5804-6068	99.13	5840-6070	2.70	4447	19.1	6.7	4.9	5.4	81.3	1.6	515.8	CT
3	Belah 1	5314-5382	94.29	5310-5380	2.00	2707	24.5	10.8	7.3	10.3	67.7	3.9	490.1	ĊŤ
4	Gilpeppee 2	6339~6650	87.00	6300-6600	3.55	4364	27.5	15.2	7.2	11.6	62.8	3.2	977.3	ĈŤ
5	Hume 1	5580-5682	84.85	5570-5636	3.75	4699	10.8	4.7	3.9	5.5	82.4	3.5	404.1	CT
6	Ingella 1	6360-6654	96.67	6350-6650	4.40	7194	24.3	9.0	5.9	7.5	77.4	0.2	1068.6	ĊT
7	Jack Lake 1	6627-6853	75.33	6600-6900	0.47	299	6.6	8.8	1.6	16.1	55.4	18.1	31.1	ET
8	Jackson 1	4539-4692	88.13	4520-4680	0.55	1138	81.8	31.1	8.4	12.2	47.4	0.9	449.7	CT
9	Karmona East l	5754-5940	88.57	5740-5950	2.62	5036	32.5	9.3	7.6	9.8	70.1	3.3	851.0	ČŤ
10	Merrimelia 7	6033-6260	94.35	6020-6250	1.20	1132	17.7	11.8	7.0	12.3	66.5	2.4	212.7	ČŤ
11	Strzelecki 3	5322-5527	93.33	5320-5350	2.90	6690	64.0	15.9	12.0	32.6	39.5			čŤ
12	Tanbar Nth 1	6662-6978	99.35	6670-6980	5.15	4622	6.9	5.2	2.5	4.9	81.0	6.5	355.7	ĊŤ
13	Tartulla 1	6061-5290	76.33	6000-6300	2.45	4566	21.2	3.9	7.5	9.2	73.6	5.8	520.6	čŤ
14	*Bycoe 1	4830-4994	80.00	4970-5000	0.80	1863	19.3	4.7	3.6	9.5	82.2	•••	154.6	ČŤ
15A	*Chookao 1	5401-5578	96.67	5400-5430	1.14	1363	23.6	12.1	7.6	26.0	54.3		268.6	ČŤ
15B			93.33	5550-5580	1.03	1739	80.2	36.8	10.7	26.2	26.3		825.9	ĊŤ
16	*Richie 1	4702-4814	80.00	4790-4820	2.58	5233	78.9	30.6	8.3	20.1	41.0		2035.3	čŤ

TABLE 3c: Extractable Organic Matter yield & composition of samples <75% within the Birkhead Formation

No	Well Name	Formation	3 of	Sample	TOC	EOM	H'c Yield		+EDM		tion (%	}	H,C	Sample
	•	Interval (ft)	Sample	Interval (ft)	(wti)	Yield (ppm)	(mg/g TOC)	Sat	Arom	ONS	Asph	Loss on Column	Total (ppm)	Туре
1A 1B	Adria Downs 1	3787-3983	51.00	3640-3940	0.25	600	29.8	7.3	4.7	9.9	59.7	18.4	72.0	CT
5	Alkina 1	5910-6216	26.88 10.13	3940-4100 6184-6500	0.20	508	20.8	2.6	5.6	8.1	61.9	21.8	41.7	ĊŢ
3	Barrolka East 1	5804-6068	40.00		0.29	750	26.1	8.7	1.4	25.1	47.1	17.6	75.7	CT
4	Belah 1	5314-5382	0.91	5750-5840	2.26	3709	25.4	9.4	6.1	9.5	72.8	2.2	574.8	CT
				5380-5600	0.35	786	28.7	7.7	5.1	8.1	73.9	5.3	100.6	CT
5A	Coonatie 2	7042-7318	27.20	6860-7110	0.38	740	140.0	8.5	63.4	13.4	63.7	11.0	532.0	CT
58	Continued 1	5345 FF44	69.33	7110-7410	3.18	5359	19.4	6.4	5.1	8.7	77.7	2.1	616.2	CT
6A	Corkwood 1	5346-5541	18.00	5100-5400	1.55	1523	21.2	8.9	12.7	30.0	31.6	16.8	329.1	CT
6B 7	Daralingie 4	5827-5956	47.00	5400-5700	0.55	451	8.6	5.1	5.4	24.5	48.1	16.9	47.4	CT
8	Daraiingle 4	5935-6031	43.00 21.33	5700-6000 5650-6100	1.60	2425 640	27.7	9.3	9.0 4.5	20.0	56.7	5.0	443.9 68.4	CT
					0.30		22.8	6.2		12.3	64.8	12.2		CT
9 10	Gilpeppee 2	6339-6650 5580-5682	16.67	6600-6900	1.70	2239	43.6	26.2	6.9	16.9	42.6	7.4	741.1	CT
	Hume 1		21.70	5636-5848	1.05	1229	15.0	7.4	5.4	0.2	76.2	10.8	157.2	CT
11	Ingella 1	6360-6654	1.33	6650-6950	0.40	762	17.5	6.7	2.5	11.1	65.5	14.2	69.9	CT
12	Jackson 1	4539-4692	40.00	4680-4710	0.70	1459	54.3	19.8	6.3	14.7	45.1	14.1	380.0	CT
13	Jackson 2	4563-4722	6.67	4720-4750	1.55	1720	29.5	19.6	7.0	24.1	38.6	10.7	457.7	CT
14A	Jackson Sth I	4547-4705	64.38	4490-4650	4.40	7789	24.1	6.7	6.9	11.7	62.9	11.8	1059.2	CT
14B 15	McKinlay 1	4831~4908	22.92	4650-4890	1.85	4197	52.6	16.6	6.6	13.2	60.0	3.6	973.9	CT
	Merrimelia 6	5946-6146	25.84	4699-4997	3.50	1607	4.9	7.5	3.2	27.0	48.0	14.3	171.9	CT
16	Merrimelia o		66.67	5920-6220	2.60	3943	21.7	7.1	7.2	7.3	71.4	7.0	564.0	CT
17 18A		6033-6260	3.33	6250-6550	0.35	429	1.8	7.8	6.5	15.6	63.3	6.8	6.2	CT
188	Morney 1	4224-4509	58.67	4100-4400	3.10	3633	23.1	10.3	9.4	10.2	53.5	16.8	715.7	CT
		F0F7 F400	36.33	4400-4700	1.65	3410	69.0	24.8	8.6	10.2	36.5	19.9	1139.1	CT
19	Spencer 2	5257-5439	72.80	5200-5450	0.95	1384	12.3	4.7	3.7	7.2	77.9	6.5	116.5	CT
20 21 A	Tambar North 1 Wantama 1	6662-6978 6472-6692	4.21	6480-6670	0.38	619	22.3	11.2	2.5	13.3	64.4	8.6	84.8	CT
21B	Mantana 1	64/2-6692	42.67 30.67	6300-6600	1.45	2355	25.2	9.6	5.9	21.2	61.7	1.6	365.0	CT
				6600-6900	3.10	4401	26.7	8.6	10.2	14.6	60.4	6.2	827.6	CT
22	Welcome Lake 1	6610-6742	44.00	6610-6910	0.90	1342	22.2	10.0	4.9	18.1	51.5	15.5	199.9	CT
23	Wills 1	5112-5223	37.86	5170-5310	1.20	1196	16.0	4.8	11.2	17.0	62.7	4.3	191.4	CT
24	Wimma 1	7615-7897	3.33	7890-8100	0.10	255	32.9	8.4	4.5	11.4	59.4	16.3	32.9	·CT
25A	Yanko l	5455-5571	15.00	5200-5500	1.00	929	14.7	8.5	7.3	19.0	64.8	0.4	146.8	CT
25B			23.67	5500-5800	1.50	1723	14.6	7.8	4.9	10.6	60.6	16.0	218.9	CT
26	*Naccowlah Sth 1	5363-5505	23.33	5340-5370	4.00	2401	8.6	6.8	7.5	25.6	60.1		343.2	CT
27	*Timpilla 1	4800-4984	66.67	4790-4820	1.88	1414	15.3	10.9	9.4	15.6	64.2		287.0	CT

1A Alkina 1 1B 2 Barrolka East 3A Curalle 1 3B 4 Gilpeppee 2 5 Innamincka 3	6805-7265	6010 7110								Column	(ppm)	
2 Barrolka East 3A Curalle 1 3B 4 Gilpeppee 2 5 Innamincka 3	-	6810-7110	1.14	2378	6.7	2.1	1.1	3.4	90.2	3.2	76.1	СТ
3A Curalle 1 3B 4 Gilpeppee 2 5 Innamincka 3		7110-7200	0.66	1490	18.5	4.8	3.4	7.6	81.1	3.1	122.2	CT
3B 4 Gilpeppee 2 5 Innamincka 3	6644-6834	6680-6830	4.28	3962	3.7	2.1	1.9	3.2	90.4	2.3	158.5	CT
4 Gilpeppee 2 5 Innamincka 3	4894-5605	5442	1.34	1010	37.3	41.9	7.6	16.2	34.3	0.0	499.5	SWC
5 Innamincka 3		5574	4.35	1713	5.9	8.2	6.7	22.2	58.3	4.6	255.4	SWC
	7401-7702	7600-7700	2.15	3184	12.9	5.0	3.7	9.6	75.3	6.4	277.0	CT
	5662-5703	5691	9.64	3182	3.0	4.7	4.7	22.4	58.2		1040 5	SWC
6 Merrimelia 7	6742-7000	6780-6940	11.70	5400	11.5	11.5	13.3	18.0	51.8	5.4	1340.5	CT
7 Morney 1	5143-5750	5300-5600	1.85	3081	17.5	4.1	6.4	8.4	62.9	18.2	323.4	CT
8A Naccowlah 1	5666-5884	5736	1.46	1925	25.2	16.8	2.3	14.1 25.4	51.2 32.2	15.6 11.9	367.5 333.3	SWC SWC
8B	EEEO EE20	5840 5553	0.78 4.27	1093 1718	42.7 10.0	23.7 16.5	6.8 4.4	23.4	56.1	11.9	333.3	C
9A Pando 1 9B	5550-5620	5587	1.78	720	3.0	3.6	3.0	39.7	53.7			č
9C		5588	3.76	1098	7.0	20.6	3.4	36.8	39.2			Č
9D		5619	2.17	1063	3.0	2.7	3.4	39.7	54.2			č
10A Tanbar Nth 1	7652-8180	7652-7950	0.95	1162	13.6	7.4	3.7	10.6	70.5	7.8	129.0	СT
108	7032-0100	7950-8180	1.57	1112	5.5	4.2	3.6	11.3	77.6	3.3	86.7	ĊŤ
11 Tartulla 1	6682-6812	6700-6720		13914	5.1	1.4	1.1	4.7	91.0	1.8	348.0	ĊŤ
12 Wareena 1	4826-4998	4869	0.86	840	21.0	17.7	3.8	17.1	60.8	0.6	180.6	SWC
13 Colson 1	6409-6768	6419	31.60		13.0	4.5	13.9	35.1	46.5		_	SWC
14A Erabena 1	6462-7426	6750-7050	1.00	1839	11.8	3.3	3.1	5.2	83.2	5.2	117.7	CT
148	3.5225	7050-7350	12.50		11.1	3.1	2.7	2.3	83.9	8.0	191.7	CT
1 Kuncherinna 1	7767-8402	7770-8060	1.15	3212	4.7	0.8	0.9	2.4	94.6	1.3	55.0	CT
		7840-7880	2.90	2258	8.1	5.9	4.5	12.2	66.0	11.4	234.9	CT
15C		8060-8340	1.25	2641	19.2	5.5	3.6	11.5	65.1	14.3	240.0	CT
15D		8070-8110	0.82	1177	12.6	6.5	2.3	16.2	60.1	14.8	103.5	CT
15E		8190-8230	0.94	869	10.8	8.5	3.2	16.5	55.9	15.9	101.6	CT
15F		8230-8270	1.62	1599	8.6	5.9	2.8	15.5	54.7	21.2	139.1	CT
16A Mokari 1	5778-5915	5786	1.17	1090	28.0	6.8	23.0	13.7	56.5	•		C
16B		5794	0.93	890	13.0	5.2	8.4	6.9	79.5			C
160	3000 0505	5797	0.14	7460	157.0		N/A	00.3	46.0	•		C
17A Poolowanna 1	7832-8506	7835	1.22	7460	157.0	20.6	5.1	28.3	46.0			SWC
17B		7918-7928 7934	3.55 1.89	4509 2537	38.0 59.0	9.8 28.7	19.8 15.2	27.8 33.6	42.6 22.5			CT SWC
17C 17D		8020	9.28	5717	22.0	16.7	16.8		5.5			SWC
17E		8128-8138	1.36	1761	42.0	17.8	14.9	30.7	36.6			CT
17E		8213	2.30	5291	58.0	13.8	11.5	39.9	34.8	-	•	SWC
17G		8428	5.01	3333	14.0	13.8	9.0		7.2			C
17H		8433	5.15	3186	23.0	17.6	19.9	17.8	44.7			Č
17I		8436	7.95	3960	20.0		26.1	37.0	22.9			C
18A Thomas 1	6808-7480	6847	1.40		•••		N/A		• • •			Ċ
188		6858'5"	5.30				N/A					С
18C		6947	1.23				N/A		• • •			C
18D		6956'9"	0.41		• • •		N/A	•••	• • •			С
18E		7294 '7"	1.89		• • •		N/A	• • •	• • •			C
18F		7439'7"	1.74				N/A					C_
19 Walkandi 1	8329-8972	8390-8690	2.30	7149	14.3	2.4	2.2	1.3	92.2	1.9	329.0	CT
20A *Chookoo 1	5832-5923	5850-5880	3.12	3337	13.3	5.8	6.6	19.4	68.1		414.0	CT
20R		5880-5910	7.40	6770	16.5	11.2	6.8	13.8	68.3		1218.8	CT
( ·	F074 F100	5908'		10643 2874	35.1	18.8	9.4 2.6	20.8 4.7	51.0 91.2		3001.8 117.8	SWC CT
2. *Wilson 1	5074-5128	5090-5120	3.75	Z0/4	3.1	1.5	C.D	4./				

TABLE 4D: Extractable (	Jrganic Matter vield &	composition of samples	: >759 within the Dage	1 Undana Hamban	/
	7. 3	composition of samples	S CLOW MICHIEU CHE DOZO	i mutton member	LOP POOLOWADDA FM 1

No	Well Hame	Formation Interval (ft)	% of Sample	mple Jerval (ft)	TOC (wt%)	EOM Yield (ppm)	H'c Yield (mg/g TOC)	Sat	EOM Arom	Composi ONS	tion (% Asph	) Loss on Column	H'C Total (ppm)	Sample Type
1 2 3 4 5 6	Ingella 1 Merrimelia 6 Adria Downs 1 Erabena 1 Kuncherinna 1 Walkandi 1	7300-7760 6723-6874 4747-4900 6462-7426 7767-8402 8329-8972	80.00 75.50 80.00 96.00 88.57 94.00	7600-7800 6720-6920 4860-4910 6450-6750 8340-8410 8690-8990	0.60 8.25 1.75 2.95 0.70 7.70	986 4075 1764 4021 3651 9485	16.2 0.7 12.7 4.5 20.4 10.5	5.0 0.5 8.4 1.9 2.0 5.3	4.9 1.0 4.2 1.4 1.9 3.2	13.3 1.4 12.8 2.8 4.9 4.6	66.9 93.5 69.1 88.6 88.2 85.9	9.9 3.6 5.5 5.3 3.0 1.0	97.4 61.1 222.7 132.7 142.5 805.0	CT CT CT CT CT

TABLE 4c: Extractable Organic Matter yield & composition of samples <75% within the Basal Hutton Member (or Poolowanna Fm)

No	Well Name	Formation	% of	Sample	TOC	EOM	H'c Yield		F0	A Compos	ition (%	<u></u>	н'с	C1-
		Interval (ft)	Sample	Interval (ft)	(wt%)	Yield (ppm)	(mg/g TOC)	Sat	Arom	ONS	Asph	Loss on Column	Total (ppm)	Sample Type
1A	Alkina 1	6805-7265	1.61	6500-6810	0.33	926	14.9	3.4	1.9	13.5	65.2	16.0	49.1	СТ
1B			59.09	7200-7310	1.72	2222	10.7	4.6	3.7	10.7	72.3	8.7	184.4	CT
2A	Barrolka East 1	6644-6834	12.00	6380-6680	0.80	1240	18.0	6.5	5.1	10.0	75.1	3.3	143.8	CT
2B			1.29	6830-7140	1.14	1252	17.2	10.1	5.6	12.9	65.6	5.7	196.5	CT
3	Belah 1	5546-5617	24.55	5380-5600	0.35	786	28.7	7.7	5.1	8.1	73.9	5.3	100.6	
4	Coonatie 2	8010-8146	40.00	8010-8350	1.33	1960	26.4	14.5	3.4	2.7	73.9	6.4	350.9	CT
5A	Gilpeppee 2	7401-7702	71.07	7320-7600	2.20	2844	14.6	7.3	4.0	9.4	76.1	3.2		CI
5B			0.67	7700-8000	0.60	615	26.4	19.7	6.1	21.2	32.5		321.4	CT
6A	Jack Lake 1	7482-7561	6.00	7200-7500	0.10	377	26.4	5.5	1.5	8.1	65.7	20.5	158.7	CT
6B			20.33	7500-7800	52.60	45789	3.0	1.5				19.2	26.4	CT
7A	Merrimelia 7	6742-7000	16.52	6550-6780	0.70	947	1.9	6.8	1.9 7.0	3.7	91.3	1.6	1557.7	CT
7B			23.08	6940-7200	1.70	1032	11.3			14.1	67.9	4.2	13.0	CT
8A	Morney 1	5143-5750	52.33	5000-5300	1.05	940	15.0	11.5	7.1	13.4	48.3	19.7	191.9	CT
88	•		50.00	5600-5900	2.95	2914	10.3	11.7	5.1	18.1	40.8	24.3	157.9	CT
9 A	Spencer 2	5795-5900	1.67	5500-5800	0.20	306	6.6	5.5	4.9	9.1	67.5	13.0	303.1	ÇΤ
9B	•		50.00	5800-6000	0.75	981	10.2	3.1	1.2	14.8	62.5	18.4	13.2	CT
10	Tartulla 1	6682-6812	72.67	6600-6900	4.85	9670	17.7	7.3	0.5	9.9	72.5	9.8	76.6	CT
11	Wantana 1	7322-7455	44.33	7200-7500	0.50	600	9.0	0.9	8.0	8.4	71.5	11.2	860.7	CT
12A	Welcome Lake 1	7392-7513	39.33	7210-7510	3.35	4912	13.6	4.3 4.7	3.2 4.6	12.0	70.3	10.2	45.0	CT
12B			1.00	7510-7810	0.40	491	21.5	12.4	5.1	11.6 23.0	71.6	7.5	456.7	CT
13	Wills 1	5340-5393	17.67	5320-5620	13.60	10409	7.5	4.1	5.7	23.0 18.5	57.3	2.2	86.0	CT
14A	Wimma 1	8571-8814	43.00	8400-8700	1.15	1449	25.3	8.8	11.3	11.0	65.5 51.5	6.2	1019.6	CT
14B			38.00	8700-9000	1.15	2129	17.0	5.0	4.2	4.8	75.8	17.4	291.2	CT
15	Adria Downs 1	4747-4900	34.24	4530-4860	3.60	4388	7.9	3.4	3.1			10.2	195.7	CT
16	Erabena 1	6462-7426	25.33	7350-7650	2.00	280	0.3	1.1	1.2	4.8	86.0	2.7	285.5	CT
17A	Kuncherinna 1	7767-8402	2.00	7620-7770	6.75	13384	5.0	1.4		1.3	84.7	11.7	6.4	CT
17B			57.50	7750-7790	0.95	1228	9.4		1.1	2.5	91.2	4.3	334.1	CT
17C			5.00	8400-8440	3.12	1334		3.5	3.8	14.6	60.4	17.7	89.7	CT
18	Walkandi 1	8329-8972	20.33	8090-8390	0.70	2351	3.1 4.4	3.7	3.6	17.3	57.9	17.5	97.5	· CT
19	*Chookoo 1	5832-5923	43.33	5910-5940	3.34			0.7	0.6	1.5	90.5	6.7	30.6	CT
20A	*Wilson 1	5074-5128	53.33	5060-5090	4.40	2046	9.9	6.8	9.3	14.5	69.5		329.6	CT ·
20B		JUI 1-3120	26.67	5120-5150	9.00	3563	6.0	4.2	3.2	5.2	87.5		263.7	CT
			LU.U/	2150-2120	9.00	3050	1.4	1.2	2.8	5.1	90. <del>9</del>		122.0	CT

TABLE 5a: Extractable Organic Matter yield & composition of samples 100% within the Patchawarra Fm.

No	Well Name	Formation Interval (ft)	Sample Interval (ft)	TOC (wt%)	EOM Yield (ppm)	H'c Yield (mg/g TOC)		EOM Arom		ition ( Asph	Loss on Column	H'C Total (ppm)	Sam; Ty;
1	Barrolka East 1	8480-8813	8500-8530	17.50	4189	2.6	6.1	4.9	22.9	58.9	7.2	460.1	CT
2	Beanbush 1	10821-11620	10869'9"-10"	5.23	1501	2.1	3.7	3.7	17.3	58.2	17.1	111.1	C_
3	Belah 1	6720-7458	7010-7310	5.80	2682	1.8	2.0	2.0	7.8	86.7	1.6	107.2	CT
4	Chandos Sth 1		7823	57.30	7000	6.0	16.3	34.6	26.1	23.0			C
5	Coonatie 2	9544-9822	9650-9760	25.20	8718	1.0	1.6	1.3	2.4	84.9	9.7	252.9	CT
6A	Cumbroo 1	•	7055	9.54	1173	4.0	2.1		21.2	43.2			C
6B	Dilabas 1	0170 0052	7073	26.00	5350	2.0		2.9	4.2	7.8 89.6	2.0	465.6	CT
7A 7B	Dilchee 1	8170-9052	8190-8400 8400-8700	33.80 37.20	6561	1.4 1.0	1.3	4.3	10.1	74.8	9.2	386.3	CT
7C			8700-9000	38.20	3852	0.6	0.9	5.4	8.1	74.9	10.7	243.1	CT
8A	Dullingari Nth 1	7967-8953	8160-8190	5.35	3084	7.0	6.0	6.7	44.1	43.2	10.7	542.1	ČŤ.
8B	Darringari Nen 1	7307-0333	8340-8370	8.20	3289	4.0	3.6	6.5	42.8	47.1			CT.
8C			8501	2.44	581	5.0	18.2	1.1	43.4	27.3			SWC
8D			8520-8550	25.20	3476	2.0	2.3	8.6	55.5	33.6			CT
9A	Durham Downs 1	8439-8633	8441	5.18	2166	12.0	8.4	20.2	43.1	28.1	2.4	622.2	SWC
9B			8516	5.66	1154	7.6	6.1	30.2	56.7	7.0	5.0	431.5	SWC
10A	Jack Lake 1	8528-9837	8560-8890	32.90	25138	5.3	3.2	3.7	7.5	84.5	1.2	1734.4	CT
10B			8890-9090	52.30		1.4	1.6	1.7	2.7	90.8	3.2	707.6	CT
10C			9090-9390	31.30	9443	2.4	4.2	3.9	3.9	82.2	5.8	765.7	CT
100			9390-9690	51.20	9574	0.5	1.3	1.5	2.7	92.0	2.5	268.1	CT
11	Jackson 1	5230-5598	5239-5578	19.10	6940	3.4	4.6	4.9	7.7	77.1	5.7	658.7	CT
12A	Jackson Sth 1	5142-5850	5190-5480	30.00	7307	4.1	10.4	6.3	24.0	56.3	3.0	1222.4	CT
12B	W P4	7502 0260	5490-5780	6.45	2851	6.5	8.5	6.2	19.1	60.3	5.9	419.1	CT CT
-1 3A	Karmona East 1	7503-8362	7530-7830	6.45	3549	6.5	5.9 5.7	5.9 4.5	7.3 9.8	73.8	7.0	418.6 139.0	CT
3 13C			7840-8140 7515'3"	1.53	1363	9.1		/A	9.0	77.6	2.4	139.0	C,
14A	Kidman 2	7135-7336	7207	1.34	••	• • •		/A	•••	•••	•		S₩€
148	KTUSHATI Z	1133-7330	7328	1.98	868	6.0	13.2	<2.5	18.5	65.8			SWC
15	Marabooka 1	6566-7061	6918	<0.05	368	207.0	19.3	8.8	24.5	47.4	contamina	ted	SWC
16A	Munkari 1	7114-7503	7155	1.55	1712	32.0	12.3	16.5	27.4	33.8			SW(
16B			7155	1.22	812	••		N/A	• • •	• • •			S₩(
16C			7158	0.98	691	23.0	13.8	18.5	30.8	36.9			SW
160			7310-7340	5.60	3126	7.0	6.4	6.1	41.7	45.8			CT
16E			7327	2.83	2310	23.0	11.9	16.4	31.4	40.3			SW
16F			7395	11.80	7265	26.0	12.4	30.2	30.7	26.7			SWC
16G			7407	3.13	1416	14.0	7.7	23.8	30.0	38.5			SWO
16H			7407	12.00	3980	14.0	11.9	29.3	35.1	23.7		1157 6	SWC
17	Naccowlah 1	6290-6828	6305	10.55	5880	11.0	10.9	8.8	35.7	43.9	0.7	1157.6	SW(
18	Pinna 1	6301-8124	6398	2.74	1952 2756	7.0	4.5	5.3 6.1	33.1 24.2	57.1 36.6	7.1	884.5	C CT
19 20A	Tartulla 1 Wilpinnie 1	8062-8450 6999-7619	8300-8320 7073'5"	5.85 4.52	2980	15.1 26.0	31.8	6.2	19.8	42.2	7.1	004.3	č,
20B	arryinnie I	0333-7013	7073 5	9.56	6492	8.0	7.2	4.4	22.3	66.1			č
200			7100'8"	2.18	908	4.0	4.5	6.0	42.1	47.4			č
21	*Gunna 1	5586-5932	5700-5730	40.10		8.4	8.1	7.4	15.8	68.6		3350.2	ČT
22A	*Richie 1	5419-5968	5630-5660	40.50		7.4	4.8	8.4	18.7	68.1		2999.1	CT
22B			5480-5510	67.40		5.5	4.0	6.2	15.6	74.2		3719.3	CT
23A	*Tinpilla 1	5548-6014	5600-5630	55.50	23959	6.0	5.8	8.2	18.3	67.6		3356.6	CT
23B			5660-5690	42.70	40461	12.6	5.4	7.9	17.6	69.1		5383.8	CT

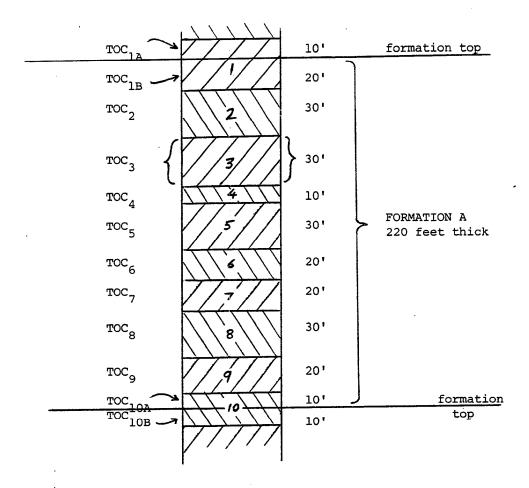
TABLE 5b: Extractable Organic Matter yield & composition of samples >75% within the Patchawarra Fm.

No	Well Name	Formation Interval (ft)	% of Sample	Sample Interval (ft)	TOC (wt%)	EOM Yield (ppm)	H'c Yield (mg/g TOC)	Sat	EOM Arom	Composi ONS	tion (%) Asph	Loss on Column	H'C Total (ppm)	Sample Type
1A 1B	Barrolka East 1 Relah 1	8480-8813 6720-7458	93.33 88.33 96.67	8460-8760 8760-8820 6710-7010	3.50	3253 1783 4828	0.5 1.5 0.6	1.1 1.7 0.6	0.8 1.2 0.7	2.3 9.6 1.4	91.0 82.1 94.3	4.7 5.5 3.0	61.7 51.7 62.7	CT CT CT
3 4 5	Hume 1 Jack Lake 1 Jackson Sth 1	6922-6977 8528-9837 5142-5850	80.00 86.47 75.00	6910-6970 9690-9860 5790-5870	20.80 44.40 2.16	8029 13535 1584	1.4 4.3 8.7	1.6 7.7 6.3	1.9 6.3 5.6	2.7 6.6 18.5	86.6 77.4 57.5	7.2 2.0 12.1	281.0 1895.9 188.4	CT CT CT
6	Tartulla 1	8062-8450	79.33	8000-8300	20.80	6121	3.6	. 3.1	9.3	11.4	68.4	7.8	758.3	CT

TABLE 5c: Extractable Organic Matter yield & composition of samples <75% within the Patchawarra Formation

No	Well Name	Formation	% of	Sample	TOC	EOM	H'c Yield		E0N	l Composi	tion (%)	)	H'C	Sample
,,,,		Interval (ft)	Sample	Interval (ft)	(wt%)	Yield (ppm)	(mg/g TOC)	Sat		ONS	Asph	Loss on Column	Total (ppm)	Туре
1A 1B	Alkina 1	8508-8696	60.47 5.71	8389-8690 8690-8795	27.70 4.55	4188 1121	0.7	1.1	3.7 0.7	9.4 22.2	84.3 68.4	1.4	200.8 39.2	CT CT
2	Belah 1	6720-7458	59.20	7310-7560	1.80	1469	5.5	3.3	3.4	7.4	85.0	0.8	98.4	čŤ
2A 3B	Coonatie 2	9544-9822	53.33 38.75	9460-9640 9760-9920	34.40 18.50	10547 8707	0.7 6.0	1.0	1.4	1.4 8.7	86.8 73.7	9.4 4.8	253.5 1115.3	CT CT
4A 4B	Dilchee 1	8170-9052	9.52 33.99	7980-8190 9000-9153	19.00 49.70	5910 4010	4.0 0.3	6.4	6.4 3.5	10.7	62.5 73.2	14.0 12.9	756.4 161.0	CT CT
5	Dullingari Nth 1	7967-8953	43.33	8940-8970	6.15	1338	2.0	1.8	6.5	42.7	49.0	7 0		CT CT
6 7	Hume 1 Jack Lake 1	6922-6977 8528-9837	6.09 20.00	6970-7085 8400-8560	8.30 45.50	2859 36256	2.2 4.9	3.3 2.7	3.1 3.4	2.7 7.2	83.7 85.5	7.2 1.3	182.7 2212.1	CT
8A 8B	Jackson 1	5230-5598	11.39 13.33	5160-5239 5578-5728	11.00 7.50	4737 3753	4.0 4.3	3.8 4.0	5.5 4.7	8.7 5.1	76.9 80.7	5.1 5.5	440.9 326.3	CT CT
9	Jackson Sth 1	5142-5850	29.23	5050-5180	21.30	10782	8.2	7.5	8.8 7.0	16.1 28.7	59.6 56.8	8.1	1756.8	CT CT
10 11	Munkari 1 Tartulla 1	7114-7503	53.33 73.89	7100-7130 8300-8503	2.70 61.30	1526 8931	6.0 2.1	7.5 0.9	13.8	17.2	56.0	12.1	1315.6	CT
12A 12B	Yanko 1	6499-6773	67.00 24.33	6400-6700 6700-7000	12.30 3.80	3147 1536	1.5 3.1	2.7 3.4	3.3 4.2	6.6 8.8	86.4 79.2	0.9 4.3	188.9 116.7	CT CT

## APPENDIX D


Technique for averaging Analytical Data

APPENDIX D: Technique for assigning TOC values to wells on a formation by formation basis.

PROBLEM:

To take into account variations in sample spacing.

#### EXAMPLE:



SOLUTION: Ten samples were collected in Formation A, which is 220 feet thick. Samples 1 and 10 extended across the formation contacts.

Assume: TOC_{1R}represents the TOC content of the lower 20' of sample 1.

Assume:  $TOC_{10A}$  represents the TOC content of the upper 10' of sample 10/

Now:  $TOC_{AV}$  = Average TOC for Formation A

$$= \left(\frac{20}{220} \times {}^{\text{TOC}}_{1B}\right) + \left(\frac{30}{220} \times {}^{\text{TOC}}_{2}\right) + \left(\frac{30}{220} \times {}^{\text{TOC}}_{3}\right) + \dots + \left(\frac{20}{220} \times {}^{\text{TOC}}_{9}\right) + \left(\frac{10}{220} \times {}^{\text{TOC}}_{10A}\right).$$

In general, if Th; = Thickness of interval i, sampled

 $^{\text{Th}}$ Total = Thickness of Formation A

n = Total number of samples taken in Formation A

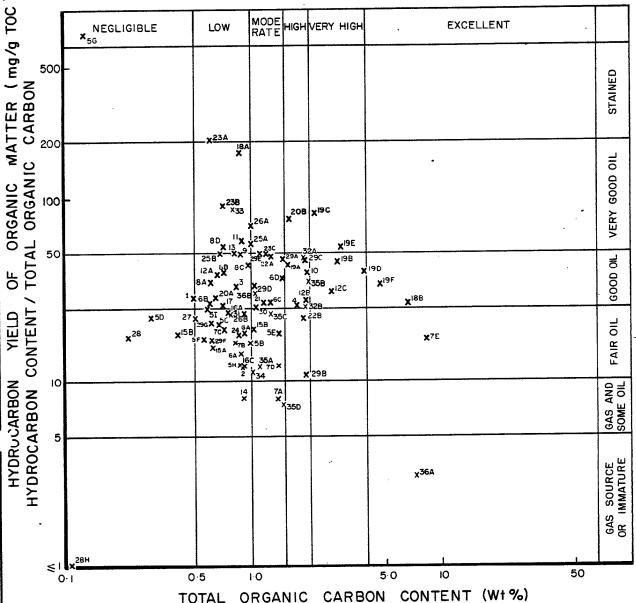
TOC; = TOC Value of sample i

Then

$$TOC_{AV} = \sum_{i=1}^{n} (Th_i \times TOC_i)$$

$$Th_{total}$$

## APPENDIX E


TOC vs hydrocarbon yield crossplots

PTY. LTD. DELHI PETROLEUM

### MURTA MEMBER

FORMATION ) (MOOGA

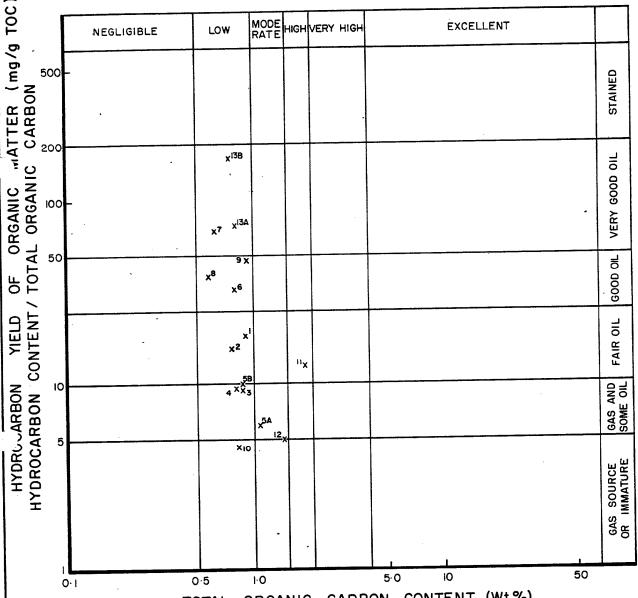
TYPE AND AMOUNT OF HYDROCARBONS GENERATED THE BY A ROCK AT ITS EXISTING LEVEL OF MATURITY



CARBON TOTAL ORGANIC **MATTER** OF **ORGANIC** AMOUNT

#### EXPLANATION OF SYMBOLS

SAMPLE AND WELL CODE (SEE TABLE IA, APPENDIX C) X IA 100 % OF THE SAMPLE LIES WITHIN THE MURTA MEMBER


ATA	Author :	D. JOHNSTONE	Date : OCTOBER 1984	Dwg. No. : 84XG - 4317	FIG. E la
	Drafted :	J. BARNS	Revised :	File No. : SH-21	837G-2091 File SD-

PTY. LTD. **PETROLEUM** DELHI

### MEMBER MURTA

FORMATION ) ( MOOGA

TYPE AND AMOUNT OF HYDROCARBONS GENERATED THE BY A ROCK AT ITS EXISTING LEVEL OF MATURITY

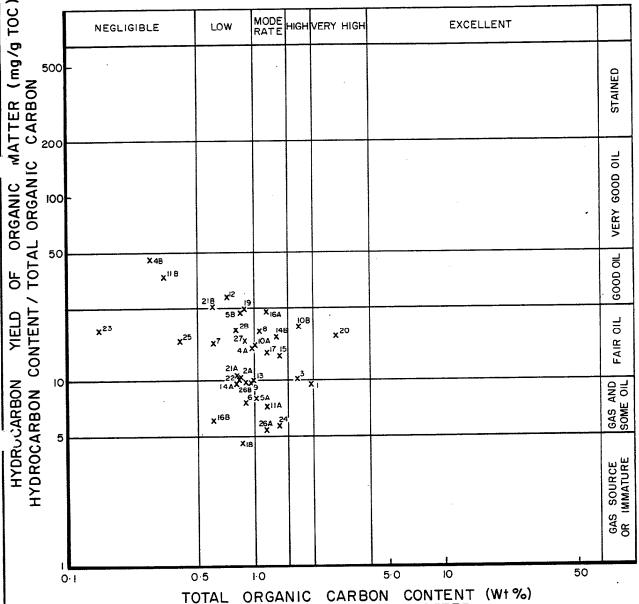


CONTENT (Wt%) CARBON TOTAL ORGANIC **ORGANIC** MATTER AMOUNT OF

### OF SYMBOLS EXPLANATION

SAMPLE & WELL CODE (SEE TABLE IB, APPENDIX C)

* > 75 % OF THE SAMPLE LIES WITHIN THE MURTA MEMBER.


1								1
	Author : D. JOHNSTONE	Date	:	OCTOBER	1984	Dwg. No.	: 84XG-4318	FIG. EIb
<b>QELH</b>	Author : D. JOHNSTONE Drafted : J. BARNS	Revised	:			File No.	: SH- 21	1 10. 215
			_				O-sa Na	9346-2091 File SD-

PTY. LTD. PETROLEUM DELHI

### **MEMBER** MURTA

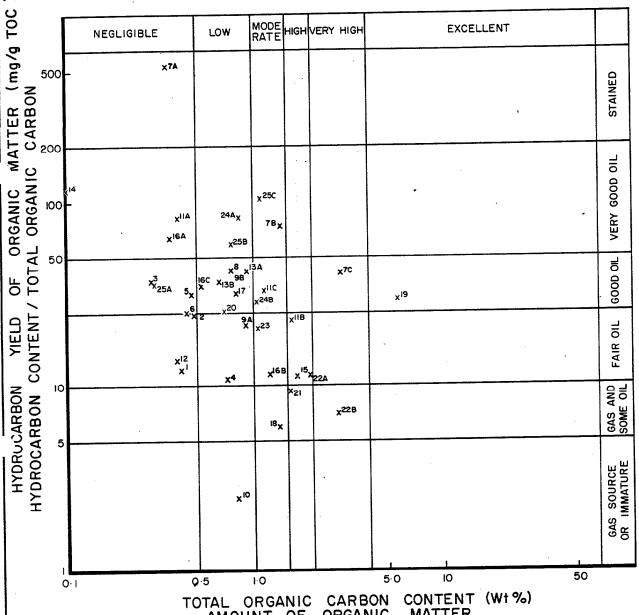
FORMATION) (MOOGA

TYPE AND AMOUNT OF HYDROCARBONS GENERATED THE BY A ROCK AT ITS EXISTING LEVEL OF MATURITY



ORGANIC MATTER **AMOUNT** OF

#### OF SYMBOLS EXPLANATION


(SEE TABLE IC, APPENDIX C) SAMPLE & WELL CODE

<75% OF THE SAMPLE LIES WITHIN THE MURTA MEMBER.

Author : D. JOHNSTONE	Date : OCTOBER 1984	Dwg. No.: 84XG-4319	FIG. E Ic
Drafted : J. BARNS	Revised :	File No. : SH-21	170. L 10

## WESTBOURNE FORMATION

TYPE AND AMOUNT OF HYDROCARBONS GENERATED THE BY A ROCK AT ITS EXISTING LEVEL OF MATURITY



**ORGANIC** MATTER OF AMOUNT

#### **EXPLANATION** OF SYMBOLS

XIA SAMPLE AND WELL CODE (SEE TABLE 2A, APPENDIX C)

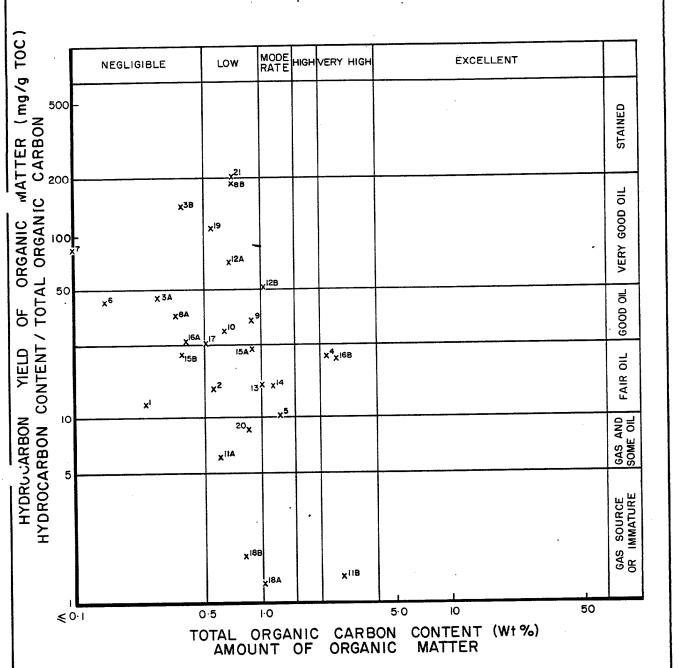
100 % OF THE SAMPLE LIES WITHIN THE WESTBOURNE FORMATION.

t		Author : D. JOHNSTONE	Date : OCTOBER 1984	Dwg. No. : 84XG -4327	FIG. E2a
1	DELHI	Author : D.JOHNSTONE  Drafted : J.BARNS	Revised :	File No. : SH-21	
_	-			Base No.	83XG-2091, File SD-

# WESTBOURNE FORMATION*

TYPE AND AMOUNT OF HYDROCARBONS GENERATED THE BY A ROCK AT ITS EXISTING LEVEL OF MATURITY




#### SYMBOLS OF EXPLANATION

SAMPLE AND WELL CODE (SEE TABLE 2B, APPENDIX C) > 75 % OF THE SAMPLE LIES WITHIN THE WESTBOURNE FORMATION.

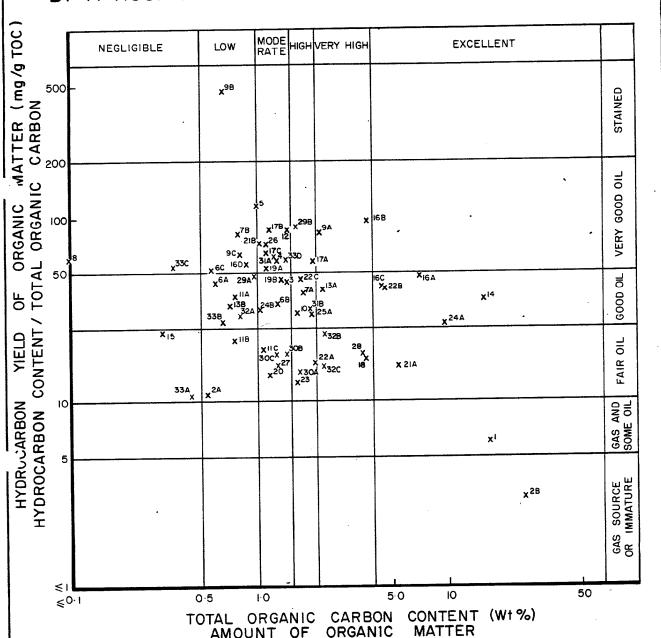
1				
DELHI	Author : D. JOHNSTONE	Date : OCTOBER 1984	Dwg. No.: 84XG-4325	FIG. E2b
DELHI	Drafted : J. BARNS	Revised :	File No. : SH -21	
			Base No.	83XG-2091, File SD-1

# WESTBOURNE FORMATION*

TYPE AND AMOUNT OF HYDROCARBONS GENERATED THE EXISTING LEVEL OF MATURITY BY A ROCK AT ITS



#### SYMBOLS **EXPLANATION** OF


XIA SAMPLE AND WELL CODE (SEE TABLE 2C, APPENDIX C) < 75% OF THE SAMPLE LIES WITHIN THE WESTBOURNE FORMATION.

	Author : D. JOHNSTONE	Date : OCTOBER 1984	Dwg. No.: 84XG-4326	FIG. E2c
DELHI	Author : D. JOHNSTONE Drafted : J. BARNS	Revised :	File No. : SH - 21	977C-2091 File SD-

DELHI **PETROLEUM** PTY. LTD.

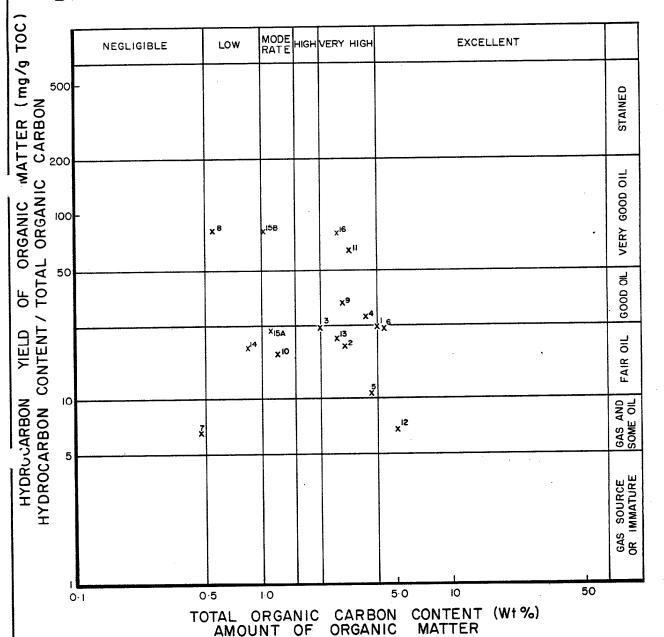
# BIRKHEAD FORMATION*

TYPE AND AMOUNT OF HYDROCARBONS GENERATED THE BY A ROCK AT ITS EXISTING LEVEL OF MATURITY



#### OF SYMBOLS **EXPLANATION**

AND WELL CODE (SEE TABLE 3A, APPENDIX C) χIA SAMPLE


100% OF THE SAMPLE LIES WITHIN THE BIRKHEAD FORMATION

	Author : D. JOHNSTONE	Date : OCTOBER 1984	Dwg. No. : 84XG -4321	FIG. E3a
QELHI	Author : D. JOHNSTONE  Drafted : J. BARNS	Revised :	File No. : SH-21	83XG-209L File SD-

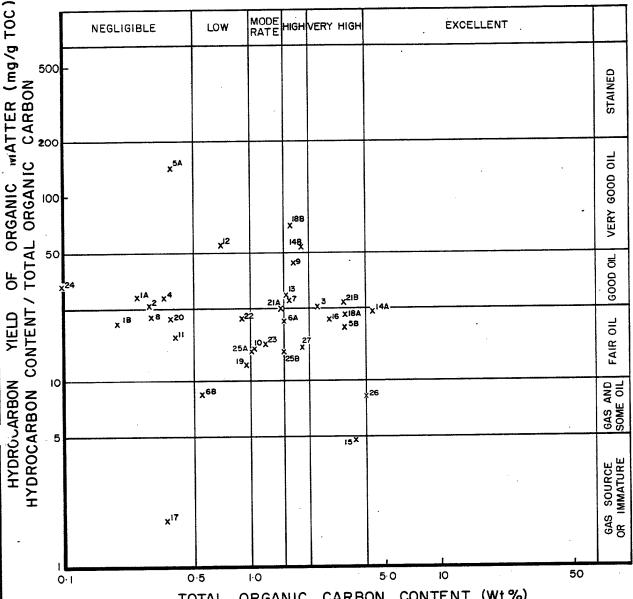
PTY. LTD. DELHI PETROLEUM

# BIRKHEAD FORMATION*

TYPE AND AMOUNT OF HYDROCARBONS GENERATED THE A ROCK AT ITS EXISTING LEVEL OF MATURITY



### **EXPLANATION** OF SYMBOLS


(SEE TABLE 3B, APPENDIX C) XIA SAMPLE AND WELL CODE

>75% OF THE SAMPLE LIES WITHIN THE BIRKHEAD FORMATION.

Author : D. JOHNSTONE	Date : OCTOBER 1984	Dwg. No.: 84XG-4322	FIG F3b
Author : D. JOHNSTONE  Drafted : J. BARNS	Revised :	File No. : SH-21	FIG. E 3D

# BIRKHEAD FORMATION*

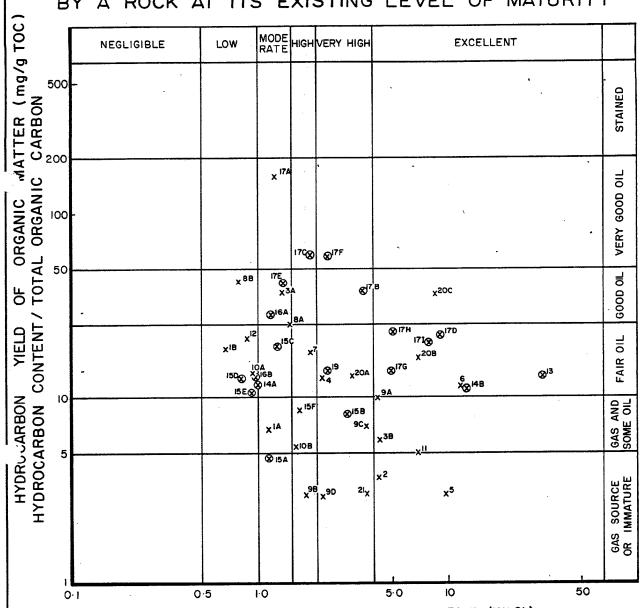
TYPE AND AMOUNT OF HYDROCARBONS GENERATED BY A ROCK AT ITS EXISTING LEVEL OF MATURITY



CONTENT (Wt%) **ORGANIC** CARBON OF **ORGANIC** MATTER AMOUNT

### OF SYMBOLS **EXPLANATION**

SAMPLE AND WELL CODE (SEE TABLE 3C, APPENDIX C)


<75% OF THE SAMPLE LIES WITHIN THE BIRKHEAD FORMATION.

	Author : D. JOHNSTONE	Date : OCTOBER 1984	Dwg. No.: 84XG-4323	FIG. E3c
The state of the s	Author : D. JOHNSTONE Drafted : J. BARNS	Revised :	File No. : SH-21	1 10. Loc

DELHI PETROLEUM. PTY. LTD.

## 'BASAL HUTTON' MEMBER AND FORMATION* **POOLOWANNA**

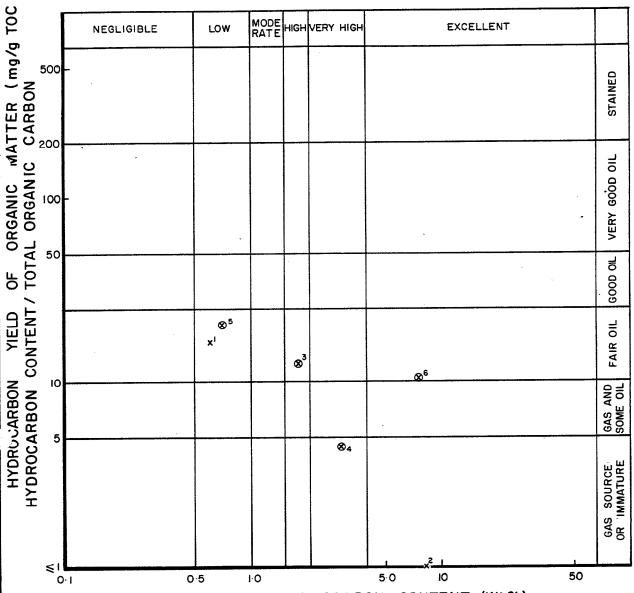
AND AMOUNT OF HYDROCARBONS GENERATED A ROCK AT ITS EXISTING LEVEL OF MATURITY



CONTENT (W1%) CARBON TOTAL ORGANIC **ORGANIC MATTER** AMOUNT OF

#### SYMBOLS **EXPLANATION** OF

BASAL HUTTON MEMBER : SAMPLE AND WELL CODE XIA


FM. : SAMPLE AND WELL CODE (SEE TABLE 4A, APPENDIX C) ⊗IA **POOLOWANNA** 

100% OF THE SAMPLE LIES WITHIN THE BASAL HUTTON MEMBER OR THE <del>*</del> POOLOWANNA FORMATION.

OELH)	Author : D. JOHNSTONE	Date : OCTOBER 1984	Dwg. No.: 84XG-4330	FIG. E4a
	Drafted: J. BARNS	Revised :	File No. : SH-21	10. L 40

## 'BASAL HUTTON' MEMBER' AND FORMATION* **POOLOWANNA**

AND AMOUNT OF HYDROCARBONS GENERATED A ROCK AT ITS EXISTING LEVEL OF MATURITY

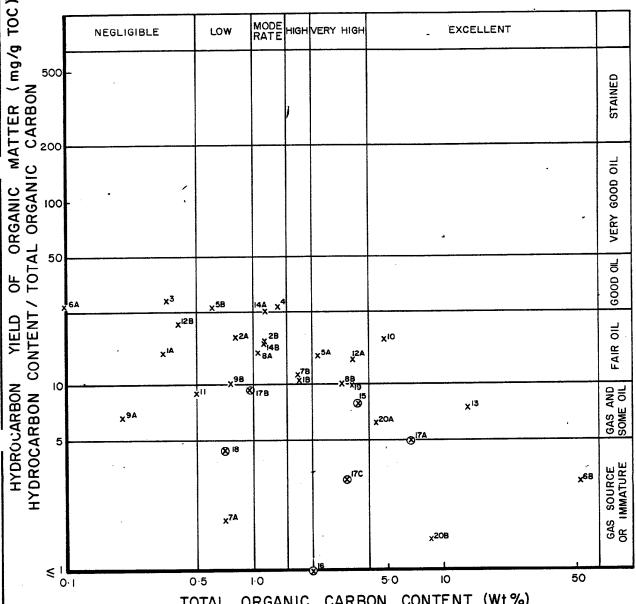


CARBON CONTENT (Wt%) TOTAL ORGANIC ORGANIC AMOUNT OF MATTER

#### OF SYMBOLS **EXPLANATION**

BASAL HUTTON MEMBER : SAMPLE AND WELL CODE χIA

⊗^{iA} POOLOWANNA FM. : SAMPLE AND WELL CODE (SEE TABLE 4B, APPENDIX C)


> 75% OF THE SAMPLE LIES WITHIN THE BASAL HUTTON MEMBER OR THE POOLOWANNA FORMATION.

Author :	D. JOHNSTONE	Date : OCTOBER 1984	Dwg. No.: 84XG-4329	FIG F4b
Drafted :	J. BARNS	Revised :	File No. : SH-21	110. 246
			Base No.	83XG-2091, File SD-1

DELHI **PETROLEUM** PTY, LTD.

## 'BASAL HUTTON' MEMBER AND FORMATION* **POOLOWANNA**

TYPE AND AMOUNT OF HYDROCARBONS GENERATED ROCK AT ITS EXISTING LEVEL OF MATURITY BY

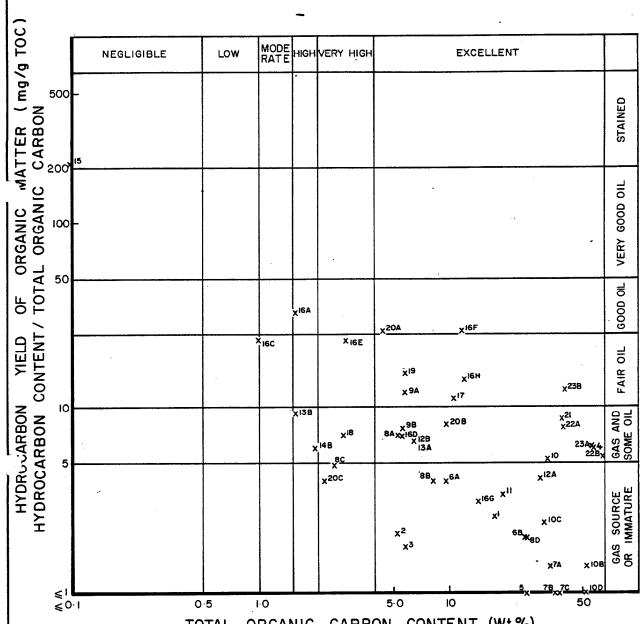


#### CONTENT (Wt%) CARBON TOTAL ORGANIC **ORGANIC** MATTER OF

#### **EXPLANATION** OF SYMBOLS

 $x^{IA}$ BASAL HUTTON MEMBER : SAMPLE AND WELL CODE

FM.: SAMPLE AND WELL CODE (SEE TABLE 4C, APPENDIX C) ⊗ IA


<75% OF THE SAMPLE LIES WITHIN THE BASAL HUTTON MEMBER OR THE POOLOWANNA FORMATION.

Author : D. JOHNSTONE	Date : OCTOBER 1984	Dwg. No. : 84XG-4331	FIG F4c
Author : D. JOHNSTONE  Drafted : J. BARNS	Revised :	File No. : SH-21	93YG-209L File SD-

DELHI PETROLEUM PTY. LTD.

## PATCHAWARRA FORMATION*

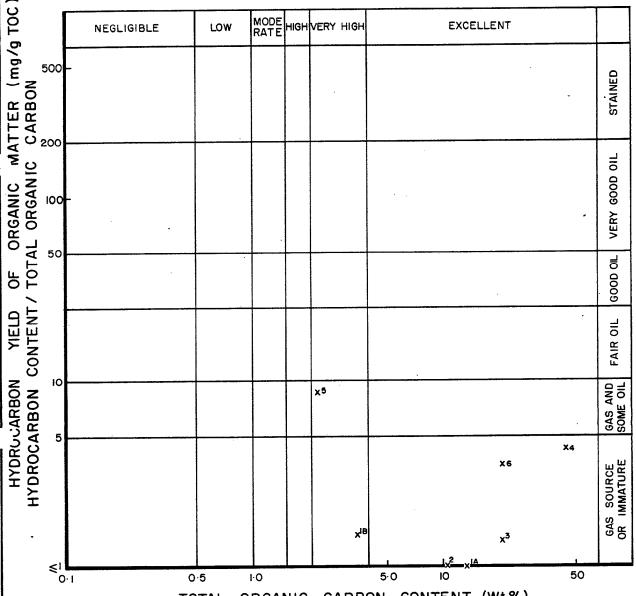
THE TYPE AND AMOUNT OF HYDROCARBONS GENERATED BY A ROCK AT ITS EXISTING LEVEL OF MATURITY



TOTAL ORGANIC CARBON CONTENT (W1%)
AMOUNT OF ORGANIC MATTER

### EXPLANATION OF SYMBOLS

XIA SAMPLE AND WELL CODE (SEE TABLE 5A, APPENDIX C)


* 100% OF THE SAMPLE LIES WITHIN THE PATCHAWARRA FORMATION

	Author : D.JOHNSTONE	Date : OCTOBER 1984	Dwg. No. : 84XG-4335	
OELHI	Drafted :- J. BARNS	Revised :	File No. : SH-21	FIG. E 5a

DELHI **PETROLEUM** PTY. LTD.

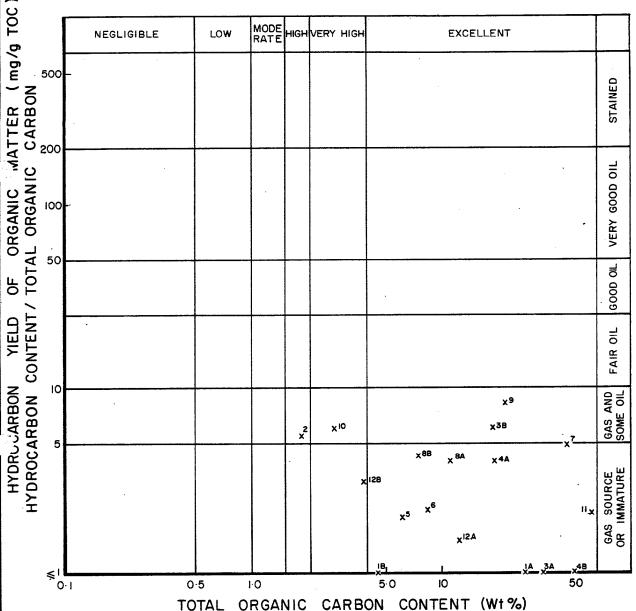
## FORMATION* PATCHAWARRA

THE TYPE AND AMOUNT OF HYDROCARBONS GENERATED BY A ROCK AT ITS EXISTING LEVEL OF MATURITY



CONTENT (Wt%) **ORGANIC** CARBON TOTAL AMOUNT OF **ORGANIC** MATTER

#### EXPLANATION OF SYMBOLS


XIA SAMPLE AND WELL CODE (SEE TABLE 5B, APPENDIX C)

>75% OF THE SAMPLE LIES WITHIN THE PATCHAWARRA FORMATION.

Author : D.JOHNSTONE	Date : OCTOBER 1984	Dwg.No.: 84XG-4334	FIG ESh
Author : D.JOHNSTONE Drafted : J.BARNS	Revised :	File No. : SH - 21	1 10. L 3D

## PATCHAWARRA FORMATION*

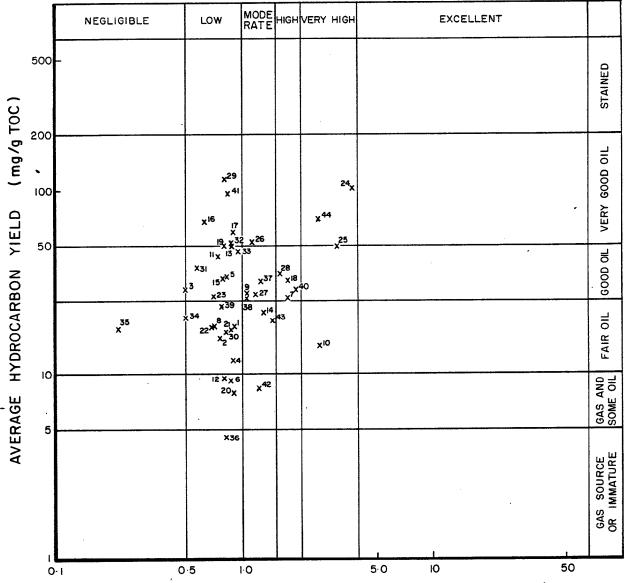
TYPE AND AMOUNT OF HYDROCARBONS GENERATED THE A ROCK AT ITS EXISTING LEVEL OF MATURITY



### **MATTER** OF **ORGANIC**

#### **EXPLANATION** OF SYMBOLS

SAMPLE AND WELL CODE (SEE TABLE 5C, APPENDIX C)


< 75 % OF THE SAMPLE LIES WITHIN THE PATCHAWARRA FORMATION.

Author : D.JOHNSTONE	Date : OCTOBER 1984	Dwg. No. : 84XG-4333	FIG E5c
Drafted : J.BARNS	Revised :	File No. : SH-21	1 10. L30

# APPENDIX F AVERAGED TOC VS HYDROCARBON YIELD CROSSPLOTS

## MURTA MEMBER *

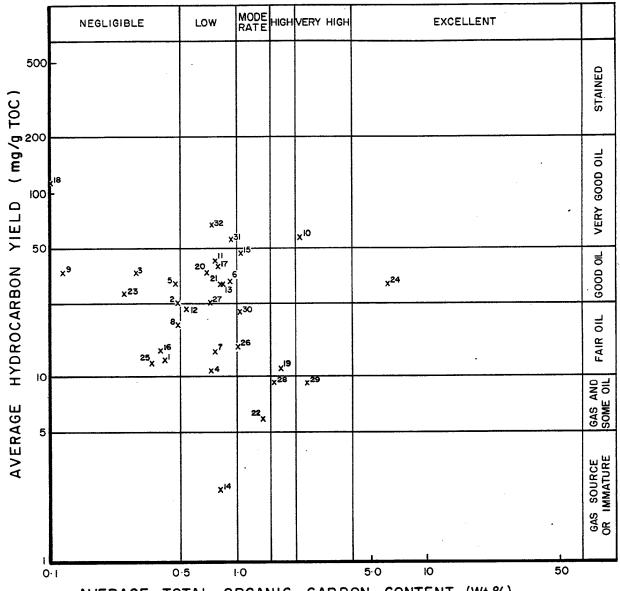
THE AVERAGE TYPE AND AMOUNT
OF HYDROCARBONS GENERATED WITHIN A FORMATION
AT ITS EXISTING LEVEL OF MATURITY



AVERAGE TOTAL ORGANIC CARBON CONTENT (Wt %)
AMOUNT OF ORGANIC MATTER

### EXPLANATION OF SYMBOLS

- XI SAMPLE & WELL CODE (SEE TABLE I, APPENDIX G )
- * INCLUDES ONLY SAMPLES 75-100% WITHIN THE MURTA MEMBER.


NOTE: THIS IS A PLOT OF VALUES THAT HAVE BEEN AVERAGED - i.e. NUMERICAL AVERAGE FOR THE FORMATION IN EACH WELL.

	7 071 1772 7 071111217011			
	Author : D. JOHNSTONE	Date : OCTOBER 1984	Dwg. No.: 84XG - 4320	FIG E
<b>GELHI</b>	Author : D. JOHNSTONE Drafted : J. BARNS	Revised :	File No. : SH-21	FIG. FI

DELHI PETROLEUM PTY. LTD.

## WESTBOURNE FORMATION*

THE AVERAGE TYPE AND AMOUNT
OF HYDROCARBONS GENERATED WITHIN A FORMATION
AT ITS EXISTING LEVEL OF MATURITY

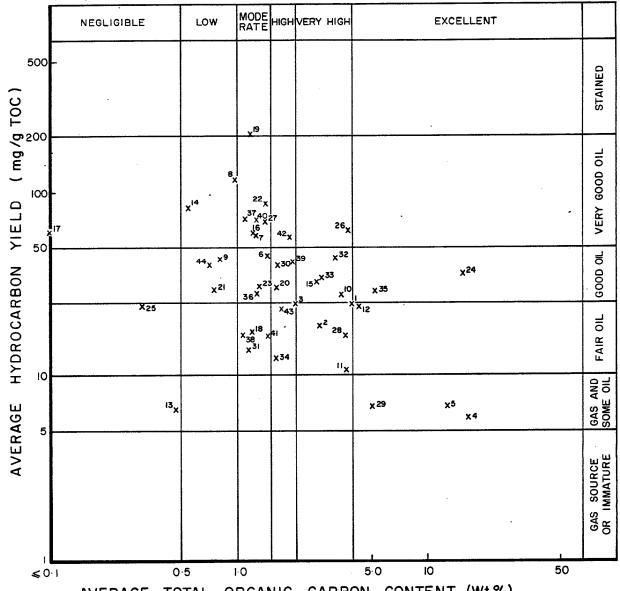


AVERAGE TOTAL ORGANIC CARBON CONTENT (W1 %)

AMOUNT OF ORGANIC MATTER

### EXPLANATION OF SYMBOLS

x A SAMPLE AND WELL CODE (SEE TABLE 2, APPENDIX G)


* INCLUDES ONLY SAMPLES 75-100% WITHIN THE BIRKHEAD FORMATION.

L				
	Author : D. JOHNSTONE	Date : OCTOBER 1984	Dwg. No. : 84 XG - 4328	FIG F2
QELHI	Drafted : J. BARNS	Revised :	File No. : SH-21	F1G. F2
			Dana Na	GTYC COOL File CO /

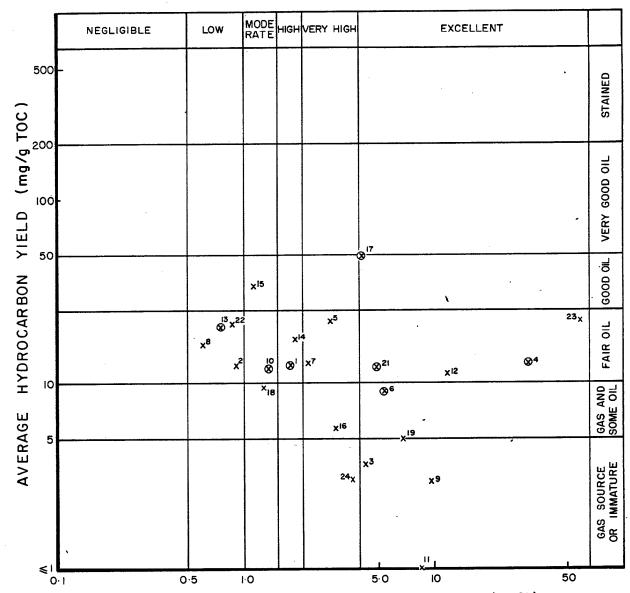
## BIRKHEAD FORMATION *

THE AVERAGE TYPE AND AMOUNT
OF HYDROCARBONS GENERATED WITHIN A FORMATION

AT ITS EXISTING LEVEL OF MATURITY



AVERAGE TOTAL ORGANIC CARBON CONTENT (W1%)
AMOUNT OF ORGANIC MATTER


## EXPLANATION OF SYMBOLS

- X SAMPLE AND WELL CODE (SEE TABLE 3, APPENDIX G)
- * INCLUDES ONLY SAMPLES 75-100% WITHIN

OELH)	Author : D.JOHNSTONE	Date OCTOBER 1984	Dwg. No. : 84XG -4324	FIG FZ
	Drafted : J. BARNS	Revised :	File No. : SH-21	F1G. F3

# 'BASAL HUTTON' MEMBER AND POOLOWANNA FORMATION*

AVERAGE TYPE AND AMOUNT OF HYDROCARBONS GENERATED A FORMATION WITHIN LEVEL OF MATURITY AT ITS EXISTING



AVERAGE TOTAL ORGANIC CARBON CONTENT (Wt%) AMOUNT OF **ORGANIC** MATTER

#### **EXPLANATION** OF SYMBOLS

- χİ BASAL HUTTON MEMBER : SAMPLE AND WELL CODE
- $\otimes^1$ POOLOWANNA FM.: SAMPLE AND WELL CODE (SEE TABLE 4, APPENDIX G)
- INCLUDES ONLY SAMPLES 75-100% WITHIN THE BASAL HUTTON MEMBER OR POOLOWANNA FORMATION.

DELHU	Author : D. JOHNSTONE	Date : OCTOBER 1984	Dwg. No. : 84XG - 4332	FIG F4
	Drafted: J. BARNS	Revised :	File No. : SH-21	1 10.1 7

## APPENDIX G

Area Tables

* Denotes wells sampled at 30' intervals

### TABLE 1: MURTA MEMBER SOURCE QUALITY

1A	18	10	10	1E	1F
	-	35 WAREENA 1	3 COONATIE 2	-	-
2A	2B	20	20	<b>2</b> E .	2F
36 WILLS 1	6 DILCHEE 1 12 HUME 1 20 MERRIMELIA 7	1 ALKINA 1 2 BELAH 1 4 CURALLE 1 8 DULLINGARI 5 21 MOOMBA 18 22 MOORARI 3 30 STRZELECKI 5 34 WANTANA 1 39 *BYCOE 1	5 CUTTAPIRRIE 1 11 FLY LAKE 4 13 INNAMINCKA 3 15 JACKSON STH 1 19 MERRIMELIA 6 23 MUDERA 1 31 TANBAR NTH 1 33 WACKETT 1	16 KARMONA E 1 17 KIDMAN 2 29 STRZELECKI 4 32 TARTULLA 1 41 *NACCOWLAH S	- DUTH 1
3A	38	3C	3D	<b>3</b> E	3F
·	42 *RICHIE 1	14 JACKSON 1 43 *TINPILLA 1	9 DULLINGARI 11 27 PINNA 1 37 WILPINNIE 1 38 YAPENI 1	26 NAPPACOONGEE	2 -
4A	. 4B	4C	4D	4E	4F
•	-	-	7 DULLINGARI 1 18 MARABOOKA 1 28 STRZELECKI 3 40 *GUNNA 1	-	-
5A	5B	5C	5D	5E	5F
_	-	10 DULLINGARI NTH 1	25 NAMUR 2	24 NACCOWLAH 1 44 *WILSON 1	-
6A	6B	6C	6D	6E	6F

## TABLE 2: WESTBOURNE FORMATION SOURCE QUAALITY

10

1E

1F

10

18

	-		2 8 16	ALKINA 1 BARROLKA E 1 INGELLA 1 MT. HOWITT 1 WIMMA 1	3 5 9 23	COONATIE 2 DULLINGARI NTH 1 JACK LAKE 1 WELCOME LAKE 1	18	STRZELECKI 4	<b>-</b> ·
₽A	28		2C	•	20		2E		2F
4 MERRIMELIA 7	-		7	CURALLE 1 HUME 1 KARMONA E 1	11 13 17 20 21	GILPEPPEE 2. JACKSON STH 1 KIDMAN 2 STRZELECKI 3 TARTULLA 1 WACKETT 1 *BYCOE 1		*TINPILLA 1 *WILSON 1	-
ВА	38		3C		3D		3E		3F
-	22	WAREENA 1	26 30	YANKO 1 *RICHIE 1	15	MOORARI 3	•		-
IA	48		4C		•4D		4E		4F
	28	*CH00K00 1	19	TANBAR NTH 1	-		-		-
5 <b>A</b>	5B		5C		50		5E		5F
•	29	*NACCOWLAH SOUTH 1	•		24	WILPINNIE 1	10	JACKSON 1	-
5A	6B		6C		6Ď		6E		6F

## TABLE 3: BIRKHEAD FORMATION SOURCE QUALITY

<u>1^</u> -	1B 13 JACK LAKE 1	1C 25 ORIENTOS 1	<u>1D</u> -	1E 17 MARABOOKA 1	<u>1F</u> -
<u>2A</u> .	<u>2B</u>	<u>2C</u> -	9 DULLINGARI NTH 1 21 MUDERA 1 44 *WILSON 1	2E 8 DELLA 1 14 JACKSON 1	<u>2F</u>
<u>3A</u> -	<u>3B</u>	3C  18 MERRIMELIA 7 31 THUNDA 1 38 *BYCOE 1 41 *NACCOWLAH SOUTH 1	6 CURALLE 1 23 NACCOWLAH 36 WIMMA 1	3E 7 CUTTAPIRRIE 1 16 KIDMAN 2 22 MUDLALEE 2 27 STRZELECKI 4 37 YAPENI 1 40 *GUNNA 1	3F 19 MOORARI 3
<u>.</u>	<u>4B</u> -	4C 34 WILLS 43 TINPILLA 1	4D 20 MT. HOWITT 1 30 TARTULLA 1 39 CHOOKOO 1	4E 42 *RICHIE 1	<u>4F</u> -
<u>5A</u> -	<u>58</u> -	5C  2 BARROLKA E. 1 3 BELAH 1 11 HUME 1 28 STRZELECKI 5	5D  10 GILPEPPEE 2 15 KARMONA E 1 32 WACKETT 1 33 WAREENA 1	<u>5E</u> 26 STRZELECKI 3	<u>5F</u> -
<u>6A</u> -	6B 4 CHANDOS 1 5 CUMBROO 1 29 TANBAR NTH 1	6C 1 ALKINA 1 12 INGELLA 1	6D 24 NAPPACOONGEE 2 35 WILPINNIE 1	<u>6E</u> -	<u>6F</u>

### TABLE 4: 'BASAL HUTTON' MEMBER AND POOLOWANNA FORMATION SOURCE QUALITY

<u>1A</u>		<u>1B</u>		<u>1C</u>		<u>1D</u>	<u>1E</u>	<u>1F</u>
-		-		-		-	•	-
								•
<u>2A</u>		<u>2B</u>		<u>2C</u>	-	<u>2D</u> -	<u>2E</u>	<u>2F</u>
•		<b>-</b>		2 8 13 22	ALKINA 1 INGELLA 1 MOKARI 1 WAREENA 1	•		-
		<u>3B</u>		<u>3C</u>		<u>3D</u>	<u>3£</u>	<u>3F</u>
-		18	TANBAR NTH 1	10	KUNCHERINNA 1	15 NACCOWL	AH 1 -	-
· · · · · · · · · · · · · · · · · · ·		<u>48</u>	•	<u>4C</u>		<u>4D</u>	<u>4E</u>	<u>4F</u>
•		-		1 14	ADRIA DOWNS 1 MORNEY 1	-	-	-
	·					·		·
<u>5A</u>		<u>5B</u>		<u>5C</u>		<u>5D</u>	<u>5E</u>	<u>5F</u>
24	*WILSON 1	16	PANDO 1	<b>5</b> 7	CURALLE 1 GILPEPPEE 2	-	-	- ,
<u>6A</u>		<u>6B</u>	_	<u>6C</u>		<u>6D</u>	<u>6E</u>	<u>6F</u>
3 9 11	BARROLKA E 1 INNAMINCKA 3 MERRIMELIA 6	6 19	ERABENA 1 TARTULLA 1	4 12 21 23	COLSON 1 MERRIMELIA 7 WALKANDI 1 *CHOOKOO 1	17 POOLOWA	ANNA 1 -	-

## APPENDIX H

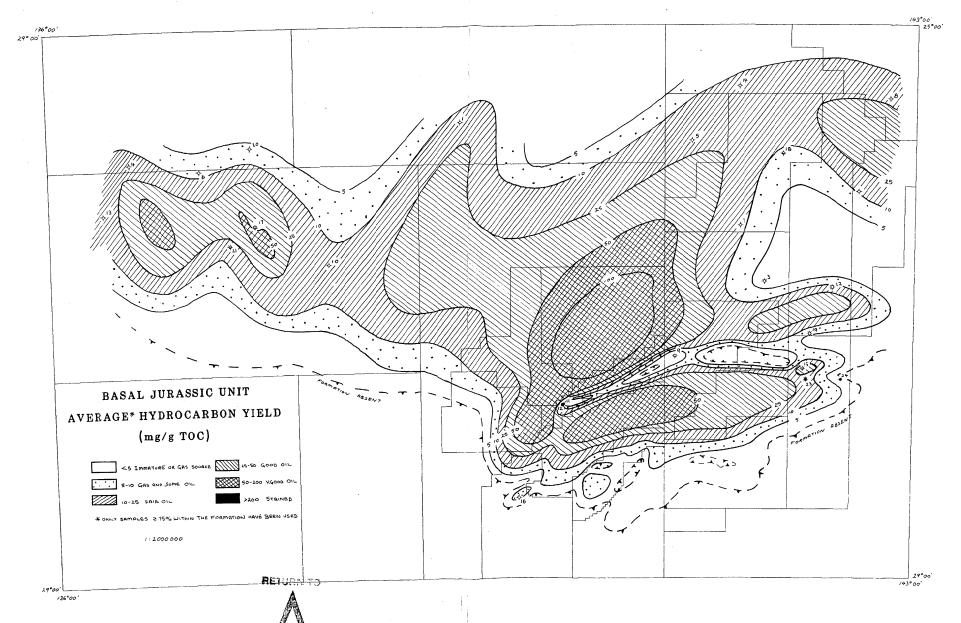
Key to Wells

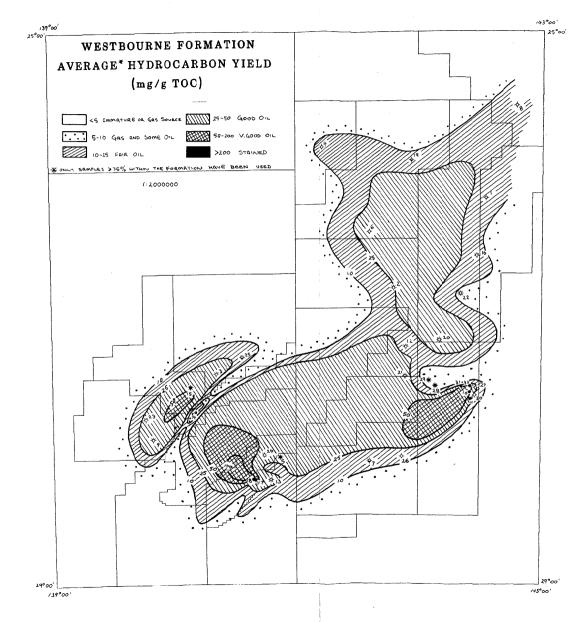
	MURTA MEMB	ER	
1 Alkina 1	12 Hume 1	23 Mudera 1	34 Wantana 1
2 Belah 1	13 Innamincka 3	24 Naccowlah 1	35 Wareena 1
3 Coonatie 2	14 Jackson 1	25 Namur 2	36 Wills 1
4 Curalle 1	15 Kackson Sth 1	26 Nappacoongee 2	37 Wilpinnie 1
5 Cuttapirrie 1	16 Karmona East 1	27 Pinna 1	38 Yapeni 1
6 Dilchee 1	17 Kidman 2	28 Strzelecki 3	39 Bycoe 1
7 Dullingari 1	18 Marabooka 1	29 Strzelecki 4	40 Gunna 1
8 Dullingari 5	19 Merrimelia 6	30 Strzelecki 5	41 Naccowlah Sth 1
9 Dullingari 11	20 Merrimelia 7	31 Tanbar Nth 1	42 Richie 1
10 Dullingari Nth 1	21 Moomba 18	32 Tartulla 1	43 Tinpilla 1
11 Fly Lake 4	22 Moorari 3	33 Wackett 1	44 Wilson 1
	WESTBOURNE FORM	ATION	
		17 Ohumala abi 3	25 Wimma 1
1 Alkina 1	9 Jack Lake 1	17 Strzelecki 3	26 Yanko 1
2 Barrolka East 1	10 Kackson 1	18 Strzelecki 4	
3 Coonatie 2	11 Jackson Sth 1	19 Tanbar Nth 1	27 Bycoe 1 28 Chookoo 1
4 Curalle 1	12 Karmona East 1	20 Tartulla 1	29 Naccowlah Sth 1
5 Dullingari Nth 1	13 Kidman 2	21 Wackett 1	
6 Gilpeppee 2	14 Merrimelia 7	22 Wareena 1	30 Richie 1
7 Hume 1	15 Moorari 3	23 Welcome Lake 1	31 Tinpilla 1 32 Wilson 1
8 Ingella 1	16 Mt. Howitt 1	24 Wilpinnie 1	32 Wilson I
	BIRKHEAD FORMA	TION	
1 Alkina 1	12 Ingella 1	23 Naccowlah 1	34 Wills 1
2 Barrolka East 1	13 Jack Lake 1	24 Nappacoongee 2	35 Wilpinnie 1
3 Belah 1	14 Jackson 1	25 Orientos 1	36 Wimma 1
4 Chandos 1	15 Karmona East 1	26 Strzelecki 3	37 Yapeni 1
5 Cumbroo 1	16 Kidman 2	27 Strzelecki 4	38 Bycoe 1
6 Curalle 1	17 Marabooka 1	28 Strzelecki 5	39 Chookoo 1
7 Cuttapirrie 1	18 Merrimelia 7	29 Tanbar Nth 1	40 Gunna 1
8 Della 1	19 Moorari 3	30 Tartulla 1	41 Naccowlah Sth
9 Dullingari Nth 1	20 Mt. Howitt 1	31 Thunda 1	42 Richie 1
10 Gilpeppee 2	21 Mudera 1	32 Wackett 1	43 Tinpilla 1
11 Hume 1	22 Mudlalee 2	33 Wareena 1	44 Wilson 1
	RASSIC UNIT (Poole	owanna Formation)	

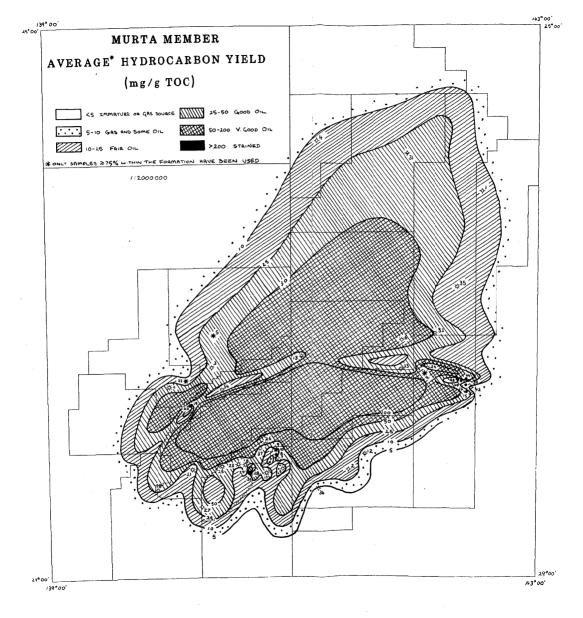
## BASAL JURASSIC UNIT (Poolowanna Formation)

1 Adria Downs 1	7 Gilpeppee 2	13 Mokari 1	19 Tartulla 1
2 Alkina 1	8 Ingella 1	14 Morney 1	20 Thomas 1
3 Barrolka East 1	9 Innamincka 3	15 Naccowlah 1	21 Walkandi 1
4 Colson 1	10 Kuncherinna 1	16 Pando 1	22 Wareena 1
5 Curalle 1	11 Merrimelia 6	17 Poolowanna 1	23 Chookoo 1
6 Erabena 1	12 Merrimelia 7	18 Tanbar Nth 1	24 Wilson 1

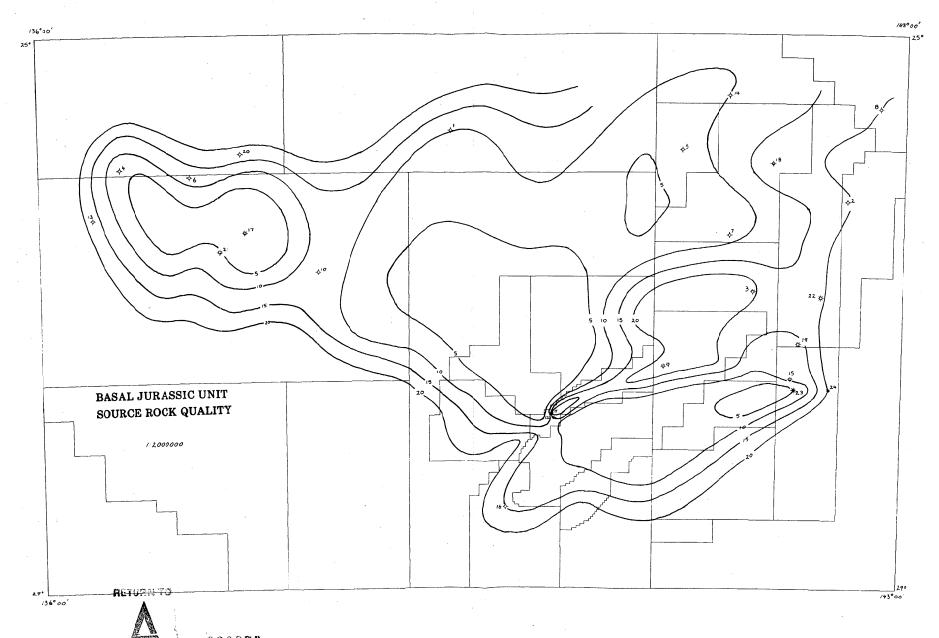
## MESOZOIC UNITS


1 Adria Downs 1	21 Gilpeppee 2	40 Mt. Howitt 1	59 Wackett 1
2 Alkina 1	22 Hume 1	41 Mudera 1	60 Walkandi 1
3 Barrolka East 1	23 Ingella 1	42 Mudlalee 2	61 Wantana 1
4 Belah 1	24 Innamincka 3	43 Munkari 1	62 Wareena 1
5 Chandos 1	25 Jack Lake 1	44 Naccowlah 1	63 Welcome Lake 1
6 Colson 1	26 Jackson 1	45 Namur 2	64 Wills 1
7 Coonatie 2	27 Jackson 2	46 Nappacoongee 2	65 Wilpinna 1
8 Corkwood 1	28 Jackson Sth 1	47 Orientos 1	66 Wimma 1
9 Cumbroo 1	29 Karmona East 1	48 Pando 1	67 Yanko 1
10 Curalle 1	30 Kidman 2	49 Pinna 1	68 Yapeni 1
11 Cuttapirrie 1	31 Kuncherinna 1	50 Poolowanna 1	69 Bycoe 1
12 Daralingie 4	32 Marabooka 1	51 Spencer 2	70 Chookoo 1
13 Della 1	33 McKinlay 1	52 Strzelecki 3	71 Gunna 1
14 Dilchee 1	34 Merrimelia 6	53 Strzelecki 4	72 Naccowlah Sth 1
15 Dullingari 1	35 Merrimelia 7	54 Strzelecki 5	73 Richie 1
16 Dullingari 5	36 Mokari 1	55 Tanbar Nth 1	74 Tinpilla 1
17 Dullingari 11	37 Moomba 18	56 Tartulla 1	75 Wilson 1
18 Dullingari Nth 1	38 Moorari 3	57 Thomas 1	
19 Erabena 1	39 Morney 1	58 Thunda 1	
20 Fly Lake 4			
_			





EXPLORATION GROUP

039873














039873

EXPLORATION GROUP LIBRARY DELHI PETROLEUM PTY. LTD. INTERVALS SAMPLED FOR LIQUID CHROMATOGRAPHY PRIOR TO 1984 1000 77 6500 7500 8000 9000 ADRIA DOWNS - 1

ALKINA - 1

ALKINA - 1

ALKINA - 1

BARROLKA E AST - 1

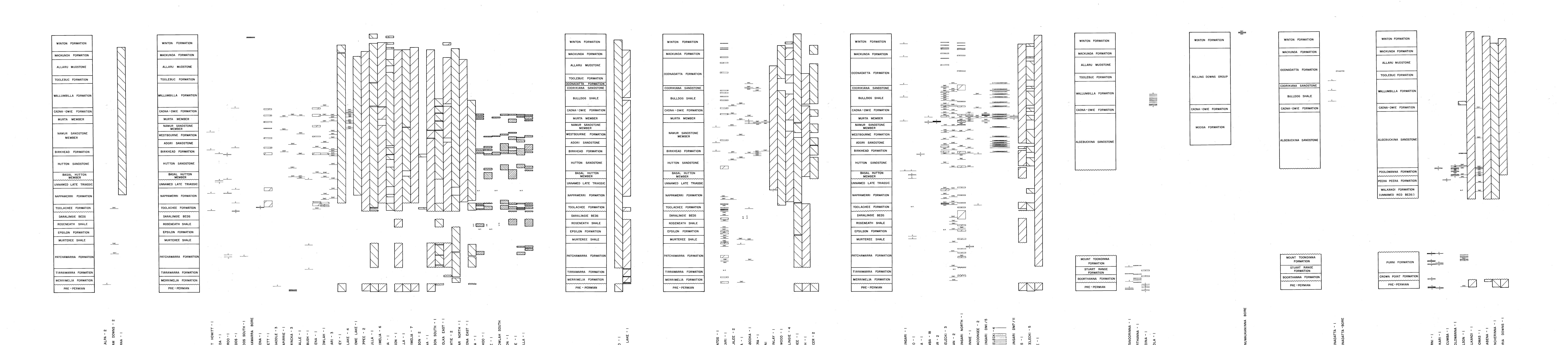
BERNALLA E AST - 1

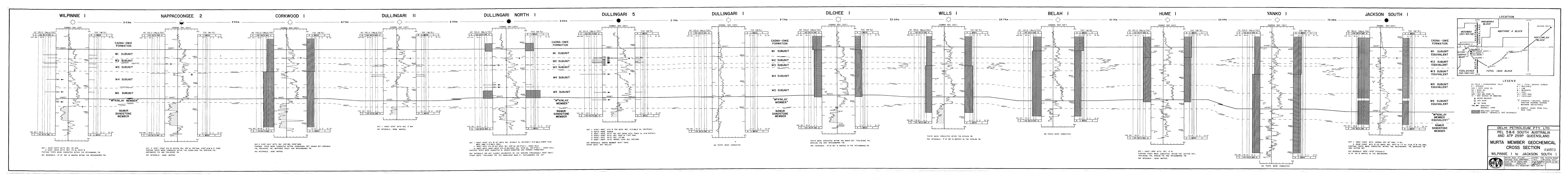
CONTANOOR - 1

MACKAR - 1

MACK

CONTINUOUS SAMPLING
WITH SECTION MISSING


COMPOSITE CUTTINGS
SAMPLE (GENERALLY 300'
INTERVALS)


COMPOSITE CUTTINGS
SAMPLE (GENERALLY 300'
INTERVALS)

COMPOSITE CUTTINGS
SAMPLE (GENERALLY 30'
INTERVALS)

EXPLORATION

PERCENTAGE OF FORMATION SAMPLED FOR LIQUID CHROMATOGRAPHY ANALYSIS





# OIL CORRELATION STUDY, PATCHAWARRA TROUGH EROMANGA/COOPER BASIN

Delhi Petroleum Pty Limited

F3/51/0-F6486/86

November 1986

EXPLONATION LIBRARY DEVELOPMENT GEOLOGY





#### The Australian Mineral Development Laboratories

nington Street, Frewville, South Australia 5063 ne Adelaide (08) 79 1662 Telex AA82520

Please address all correspondence to P.O. Box 114 Eastwood SA 5063 in reply quote:

# amde[

28 November 1986

F 3/51/0 F 6486/86

Delhi Petroleum Pty Limited CSR House 101 Grenfell Street ADELAIDE SA 5000

Attention: Dr J. Hunt

#### REPORT F 6486/86

YOUR REFERENCE:

Order no. DG-D-302837

TITLE:

Oil correlation study, Patchawarra

Trough, Eromanga/Cooper Basin

MATERIAL:

Oils

LOCALITIES:

BOOKABOURDIE-1, FLY LAKE-1, KENNY-1,

MOOLION-1, MODRARI-1, YANPURRA-1

IDENTIFICATION:

As in Table 1 of report

DATE RECEIVED:

26 June 1986

WORK REQUIRED:

Topping oil to 210°C. Deasphaltening

and liquid chromatography. Urea adduction of saturates. 6C-MS of naphthenes (urea non-adduct).

Isolation of aromatic hydrocarbons by thin layer chromatography. GC-MS of aromatics. Calculation of aromatic

maturity ratios and equivalent

vitrinite reflectance. Interpretation.

Investigation and Report by: Dr David M. McKirdy and
Dr Robert E. Cox

Manager-Petroleum Services Section: Dr Brian 6. Steveson

& he his king

for Dr William G. Spencer

General Manager

Applied Sciences Group

cap

Head Office: lemington Street, Frewville South Australia 5063 Telephone (08) 79 1662 Telex: Amdel AA82520 Pilot Plant: Osman Place Thebarton, S.A. Telephone (08) 43 5733 Telex: Amdel AA82725

Telex: Amdel AA82725
Branch Laboratories:
Melbourne, Vic.
Telephone (03) 645 3093
Perth, W.A.
Telephone (09) 325 7311

Telex: Amdel AA94893 Sydney, N.S.W. Telephone (02) 439 7735 Telex: Amdel AA20053

Townsville Queensland 4814 Telephone (077) 75 1377

#### 1. INTRODUCTION

Six oils (3 Jurassic, 3 Permian: Table 1) from exploration wells located in the Patchawarra Trough, Eromanga/Cooper Basin, were nominated for detailed analysis of their naphthenes and aromatic hydrocarbons by gas chromatography-mass spectrometry (GC-MS).

The aims of the investigation were twofold:

- to determine the source affinity and thermal maturity of the oils as indicated by their sterane, terpane and isoprenoid alkane biomarker geochemistry; and
- to compare the aforementioned biomarker maturity data with that obtained using the methylphenanthrene index (MPI) and other aromatic hydrocarbon ratios (Radke and Welte, 1983; Radke et al., 1984; Alexander et al., 1985).

Preliminary results were phoned to J. Hunt on 24 October 1986.

#### 2. ANALYTICAL METHODS

Details of the analytical procedures are given in Appendix 1.

#### 3. RESULTS

Analytical data are summarised and presented herein as follows:

	<u>Table</u>	<u>Figure</u>	<u>Appendix</u>
C ₁₂₊ bulk composition	2	1	· —
C ₁₂₊ saturates (alkanes)	2,3	2-7	-
GC-MS of naphthenes	3,4	8-12	2
GC-MS of aromatics	5-7	13,14	_

#### 4. DISCUSSION

#### 4.1 Bulk Composition

The six oils analysed in this study, regardless of reservoir age, all have a paraffinic  $\mathbb{C}_{12+}$  bulk composition (Fig. 1). The Jurassic oils, however, have lower aromatics/saturates ratios, and are more waxy, thus:

Well	Reservoir	A/S ¹	<u>n</u> -c ₂₃₊ 2 API
Pepita-I	Tirrawarra	0-11	18.0 39
Bookabourdie-1	Birkhead	0.07	25.5 46.3
Kenny-1	Birkhead	0.07	50.8 35.6
Moolion-1	Poolawanna	0.06	22.0 44.5
Fly Lake-1	Tirrawarra	0.13	<b>20.0</b> 55 <b>19.0</b> 53 <b>10.5</b> 54
Moorari-1	Tirrawarra	0.18	
Yanpurra-1	Tirrawarra	0.17	

- Saturates = paraffins (normal and iso-alkanes) and naphthenes (Table 2)
- 2. Waxy  $\underline{n}$ -alkanes as a percentage of total  $C_{12}$ - $C_{33}$   $\underline{n}$ -alkanes

The anomalously high asphaltene content of the Fly Lake-1 (Tirrawarra) crude (Table 1) may be an artefact of oxidation during storage [Note: the Fly Lake-1 and Yanpurra-1 samples are aliquots of topped oils which were prepared in 1980 for an earlier geochemical study of the Eromanga/Cooper Basin (McKirdy, 1982)].

#### 4.2 Source Affinity

Mass fragmentograms of the naphthenes isolated from the Bookabourdie-1 (Birkhead) oil are, with one exception (m/z 123, drimanes), characterised by low signal/noise ratios (Figs. 8-10, Appendix 2). In other words, steranes, triterpanes and long-chain ( $C_{25+}$ ) isoprenoid alkanes appear to be poorly preserved in this particular oil. The reasons for this feature are not clear. It may be an artefact of the work-up procedure, in which case it should be checked out by repeat analysis.

The similarity of the  $C_{i4}$ - $C_{i6}$  drimane and  $C_{i6}$ - $C_{20}$  isoprenoid alkane distributions of the Bookabourdie-1 (Birkhead), Kenny-1 (Birkhead) and Moolion-1 (Poolawanna) oils (parameters 14-17, Table 3; Appendix 2) suggests that all three Jurassic crudes have a broadly similar source affinity.

Aspects of the  $C_{12+}$  composition of both the Jurassic and Permian oils attest to their terrestrial origin. These include the dominance of  $C_{29}$  homologues in their  $C_{27}-C_{29}$  sterane and diasterane distributions (parameters 1-3, Table 3; Fig. 10). High pristane/phytane and (in the Jurassic oils) pristane/n-heptadecane ratios (pr/ph = 3.6-5.5; pr/n- $C_{17}$  = 1.0-1.3 : Figs. 2-7) indicate that their precursor terrigenous organic matter was exposed to oxic conditions en route to its final site of accumulation in a peat swamp environment (Fig. 11) where it was reworked by anaerobic acidophilic bacteria. The somewhat lower pristane/n-heptadecane ratios of the Permian oils (pr/n- $C_{17}$  = 0.46-0.84) reflect their higher maturity (Tables 5, 6).

Bacteria were the precursors of the  $C_{15}$  and  $C_{16}$  drimanes (m/z 123),  $C_{27}-C_{35}$  hopanes (m/z 191) and (in lesser concentration) methylhopanes (m/z 205) found in the oils (Fig. 9, Appendix 2).

Regular (head-to-tail) acyclic isoprenoids up to  $C_{40}$  have been tentatively identified in these oils (m/z 183, Fig. 9). These isoprenoid distributions differ in detail from those found in oils generated from source rocks deposited under stable anoxic conditions, and therefore attributed to methanogenic archaebacteria (McKirdy et al., 1984, 1986). The higher isoprenoids ( $C_{2\,i+}$ ) in these Jurassic and Permian crudes are more likely to be derived from long-chain oligoterpenyl alcohols which occur in higher plants (Philp and Gilbert, 1986).

The m/z 123 and 259 mass fragmentograms of the oils (retention time 25-30 mins.: Fig. 8) confirm the presence of the tetracyclic diterpanes, phyllocladane and (in lesser abundance) beyerane and kaurane. These particular  $C_{20}$  hydrocarbons are biological markers of conifer leaf resins (Noble et al., 1985). It is noteworthy that beyerane and kaurane, hitherto considered to occur only in Mesozoic and younger sediments (R. Alexander, pers. comm.), are here more abundant (relative to phyllocladane) in the Permian oils than in the Jurassic oils (Fig. 8; parameter 22, Table 4). Clearly, these biomarkers cannot now be used to distinguish Permian from Mesozoic-sourced oils in the Eromanga/Cooper Basin.

#### 4.3 Maturity and Migration

Sterane and terpane-based biomarker maturation indices (Table 3) suggest that the Jurassic and Permian crudes in question are mature. Sterane isomerisation is complete in all samples. However, comparison of their respective Tm/Ts trisnorhopane and  $\mbox{Ts/C}_{30}$  hopane ratios (parameters 9 and 10, Table 3) suggests that the Permian oils are considerably more mature than the Jurassic oils. In the Permian oils no Tm ("maturable" trisnorhopane) could be detected.

Such a maturity difference is indeed apparent from their aromatic hydrocarbons (Figs. 13, 14). Methylphenanthrene index (MPI) measurements (Table 5) convert to calculated source maturities of VR = 0.54-0.77% for the Jurassic oils and VR = 1.03-1.09% for the Permian oils. Other aromatic hydrocarbon ratios listed in Tables 5 and 6 accord with this assessment of maturity. Additional signs of the lower maturity of the Jurassic crudes include

- higher pristane/n-heptadecane ratios (pr/n-C_{i7} > 1 : Tables 2, 3);
- 2) C₁₂₊ n-alkane profiles skewed towards higher carbon number, particularly in the case of Kenny-1 oil (Birkhead : maximum at n-C₂₅) in which the waxy C₂₃₊ n-alkanes also display a marked odd/even predominance (Figs. 2-7).

When these oil maturities are compared with the present-day maturation levels of their Jurassic and Permian reservoirs (Table 7), it is evident in all but two cases that the oil is more mature than its host reservoir, consistent with migration from a structurally lower source kitchen.

The first exception is Kenny-1 (Birkhead) where early expulsion from a local, low maturity source (VR = 0.54%) may have been followed by further subsidence and maturation of the source/reservoir sequence.

The second exception is Yanpurra-1 (Tirrawarra), a much more mature oil (source VR = 1.09%) which is trapped in a Permian reservoir at an estimated present-day maturation level of VR = 1.30%. In this case, the original oil charge must have undergone considerable cracking and gasification in the reservoir. Such in situ maturatin is consistent with the fact that the Yanpurra-1 crude has the lowest proportion of  $\mathbb{C}_{23+}$  n-alkanes (section 4.1), and the lowest  $\mathbb{C}_{29}$  sterane 208/20R ratio, of the three Permian oils (cf. Lewan et al., 1986).

The sterane  $C_{29}$  kkk 20S/20R and kpp/kkk 20R ratios of all the oils (parameters 4 and 6, Table 3) display evidence of geochromatographic fractionation that can be attributed to long-distance migration (Fig. 11). This may also account for their high  $C_{29}$  diasterane/sterane ratios (parameter 7, Table 3). It is significant that the Moolion-1 (Poolawanna) and Yanpurra-1 (Tirrawarra) crudes appear to be more migrated than the other oils plotted in Figure 11. These two oils are the most out-of-place in terms of their calculated source maturities (Table 7).

#### 4.4 Oil-Oil Correlation

In addition to their higher aromatic maturities (Tables 5-7) and aromatic/saturates ratios (Section 4.1), the Permian oils differ from the Jurassic crudes in having higher rearranged/regular  $C_{16}$  drimane ratios (Appendix 2), thus:

Well	Reservoir	RHD/HD1,2
Bookabourdie-1	Birkhead	0.17
Kenny-1	·Birkhead	0.22
Moolion-1	Pool awanna	0.18
Fly Lake-1	Tirrawarra	0.29
Moorari-1	Tirrawarra	0.28
Yanpurra-1	Tirrawarra	0.28

^{1.} HD = homodrimane (C₁₆)
RHD = rearranged homodrimane (C₁₆)

^{2.} Dynamic range of this parameter in Eromanga/Cooper Basin oils and condensates is 0.13-0.42 (n = 26)

The Permian oils, as a group, are also characterised by unusual triterpane distributions (m/z 191, Fig. 9). In particular, regular hopanes are present in unusually low concentrations relative to  $\mathbb{C}_{27}$  trisnorneohopane (Ts),  $\mathbb{C}_{36}$  pentacyclic terpane, moretanes, steranes and tetracyclic terpanes (see parameters 8, 10, 12, 18, 20 and 21, Tables 3 and 4). A related phenomenon (viz. total lack of hopanoid triterpanes) has been reported previously in a Permian oil from the Tirrawarra Field (McKirdy, 1985). These features presumably arise from the relatively high maturity (source and reservoir) of the Permian oils (see Section 4.3), in which case preferential cracking of hopanes would appear to be the most likely explanation. Likewise, cracking of pristane to 2,6,10-trimethyltridecane (TMTD) during in situ maturation of the Permian oils would explain their high TMTD/pr values (Tables 2, 3; cf. McKirdy, 1982).

Accordingly, the marked differences between Jurassic and Permian oils, evident in the following primarily source-related parameters, may in this case be due to the pronounced thermal alteration of the latter crudes:

Parameters	Jurassic	Permian
$\mathbb{C}_{30}$ pentacyclic terpane/ $\mathbb{C}_{30}$ hopane $\mathbb{C}_{30}$ hopane/ $\mathbb{C}_{29}$ steranes $\mathbb{C}_{24}$ tetracyclic terpane/ $\mathbb{C}_{30}$ hopane $\mathbb{C}_{6}$ H-phyllocladane/ $\mathbb{C}_{30}$ hopane	0.08-0.09 1.4 -3.8 0.07-0.37 0.06-0.98	1.6 -3.4 0.10-0.27 1.0 -2.0 2.0 -4.2

Within the Jurassic suite of oils, the Moolion-1 (Poolawanna) and probably also Bookabourdie-1 (Birkhead) crudes have atypical  $C_{25+}$  isoprenoid alkane distributions (Fig. 9), as highlighted by the following data:

Well	Reservoir	C ₃₀ /C ₃₉ Regular Isoprenoid
Bookabourdie-1	Birkhead	[1.4]
Kenny-1	Birkhead	0.41
Moolion-1	Poolawanna	1.7
Fly Lake-1	Tirrawarra	0.60
Moorari-1	Tirrawarra	0.61
Yanpurra-1	Tirrawarra	0.71

^[ ] approximate value because of low S/N ratio in m/z 183 mass fragmentogram

#### 5. CONCLUSIONS

 The three Jurassic and three Permian oils from the Patchawarra Trough examined in this study are of similar paraffinic bulk composition and terrestrial source affinity.

- The Jurassic oils tend to be more waxy and have lower C₁₂₊ aromatics/saturates ratios. Their high pristane/phytane and pristane/n-heptadecane ratios indicate derivation from land-plant organic matter deposited in a peat swamp environment.
- 3. The Permian oils appear to belong to one genetic family; whereas the unusual C₂₅₊ regular isoprenoid distributions of the Moolion-1 (Poolawanna) and Bookabourdie-1 (Birkhead) oils distinguish them from the other Jurassic crude analysed.
- 4. The Jurassic oils were expelled from their respective source rocks at lower maturation levels (VR = 0.54-0.77%) than were the Permian oils (VR = 1.03-1.09%). The latter crudes have since undergone appreciable thermal alteration (cracking) in the reservoir. Such alteration caused *inter alia* preferential destruction of hopanoid triterpanes and has severely modified several key source-dependent biomarker ratios (e.g. hopane/sterane ratio).
- 5. Dil source maturities ( $VR_{calc}$ ) and presend-day reservoir maturities ( $VR_{meas}$ ), in conjunction with sterane and diasterane geochromatographic data, suggest that relative migration distances are as follows:

#### Jurassic

Kenny 1 < Bookabourdie-1 < Moolion-1

#### Permian

Fly Lake-1 < Moorari-1 < Yanpurra-1

 Tetracyclic diterpane distributions cannot be used to differentiate Jurassic oils from those of Permian origin.

#### 6. REFERENCES

- ALEXANDER, R., KAGI, R.I., ROWLAND, S.J., SHEPHERD, P.N. and CHIRILA, T.V., 1985. The effects of thermal maturity on distributions of dimethylnaphthalenes and trimethylnaphthalenes in some ancient sediments and petroleums. *Geochim. Cosmochim. Acta*, <u>49</u>, 385-395.
- LEWAN, M.D., BJOROY, M. and DOLCATER, D.L., 1986. Effects of thermal maturation on steroid hydrocarbons as determined by hydrous pyrolysis of Phosphoria Retort Shale. *Geochim. Cosmochim. Acta*, <u>50</u>, 1977-1987.
  - McKIRDY, D.M., 1982. Petroleum geochemistry and source-rock potential of the Cooper Basin and superjacent Eromanga Basin. *Unpublished report* for Delhi Petroleum Pty Limited.
  - McKIRDY, D.M., 1985. Comparative geochemistry of three Permian condensates from the southern Cooper Basin. AMDEL Report F6199/85 for Delhi Petroleum Pty Limited (unpubl.).

- McKIRDY, D.M., KANTSLER, A.J., EMMETT, J.K. and ALDRIDGE, A.K., 1984.

  Hydrocarbon genesis and organic facies in Cambrian carbonates of the eastern Officer Basin, South Australia. In: Petroleum Geochemistry and Source Rock Potential of Carbonate Rocks (ed. J.G. PALACAS), Amer. Assoc. Petrol. Geol. Studies in Geology 18, pp. 13-31.
- McKIRDY, D.M., COX, R.E., VOLKMAN, J.K. and HOWELL, V.J., 1986.

  Botryococcane in a new class of Australian non-marine crude oils.

  Hature, 320, 57-59.
- NOBLE, R.A., ALEXANDER, R., KAGI, R.I. and KNOX, J., 1985. Tetracyclic diterpenoid hydrocarbons in some Australian coals, sediments and crude oils. Geochim. Cosmochim. Acta 49, 2141-2147.
- PHILP, R.P. and GILBERT, T.D., 1986. Biomarker distributions in Australian oils predominantly derived from terrestrial source material. Org. Geochem. (in press).
- RADKE, M. and WELTE, D.H., 1981. The methylphenanthrene index (MPI): a maturity parameter based on aromatic hydrocarbons. In: Advances in Organic Geochemistry 1981, (eds. M. BJOROY et al.), Wiley, Chichester, pp. 504-512.
- RADKE, M., LEYTHAEUSER, D. and TEICHMULLER, M., 1984. Relationship between rank and composition of aromatic hydrocarbons for coals of different origins. Org. Geochem., <u>6</u>, 423-430.

TABLE 1: PATCHAWARRA TROUGH DILS SELECTED FOR GC-MS ANALYSIS

Well	Reservoir Formation	Test	Depth ft
Bookabourdie-1	Birkhead	DST 12	6946-7002
Kenny-1	Birkhead	DST 1	6768-6827
Moolion-1	Pool awanna	DST 1	8004-8026
Fly Lake-1	Tirrawarra	Production	<b>9297-938</b> 3
Moorari-1	Tirrawarra	DST 6	9562-9640
Yanpurra-1	Tirrawarra	DST 7	9488-9606

TABLE 2: OIL ANALYSES, C12+ FRACTION, PATCHAWARRA TROUGH

Well	Depth (ft)		C12+ C	mpositi	on				Alkane	Ratios	
MEII	% Formation	N+Iso %	Naph ·	Arom %	Res %	Asph %	TMTD/Pr	Np/Pr	Pr/Ph	Pr/n-C ₁₇	Ph/n-C ₁₆
Bookabourdie-1	6946-7002 Birkhead	48.7	33.1	5.7	12.0	0.5	O. 4B	0.26	5.5	0.98	0.20
Kenny-1	6768-6827 Birkhead	68.6	14.7	5.8	10.0	0.9	0.45	0.32	4.6	1.1	0.21
Moolion-1	8004-8026 Poolawanna	53.5	25.4	4.7	16.0	0.4	0.61	0.31	4.4	1.3	0.31
Fly Lake-i	9297-9383 Tirrawarra	48.3	23.5	<b>9.</b> 2	16.8	2.2	1.0	0.44	3.6	0.46	0.13
Moorari-1	9562-9640 Tirrawarra	43.0	21.9	11.9	22.9	0.3	0.89	0.36	4.5	0.67	0.16
Yanpurra-1	9488-9606 Tirrawarra	49.6	22.8	12.4	14.2	1.0	0.73	0.31	5.5	0.84	0.19
Naph = naphth	ic hydrocarbons	5	Ni Pi Fi	p : r : h : -C ₁₇ :	= norp = pris = phyt = n-he	10-trime pristane stane ane eptadecane	E	ecane			

TABLE 3: BIOMARKER PARAMETERS OF SOURCE, MATURITY, MIGRATION AND BIODEGRADATION IN SIX OILS FROM THE PATCHAWARRA TROUGH

AMDEL Sample	Well	Formation				Stera	anes					Terpa	nes			Ac	zy⊏lid	= Alka	anes
	*Paramet	er	1 :	2	3	4	5	6	7	8	9	10	1 1	12	13	14	15	16	1.7
MS-310	Bookabourdie-1	Birkhead	-	- (	4.1	_	-			-			-		_	5.5	0.48	0.98	0.20
MS-311	Kenny-1	Birkhead	L .	<u>.</u>	7.4	0.96	1.4	1.42	1.4	0.08	1.9	0.12	1.2	0.13		4.6	0.45	1.1	0.21
MS-312	Moolion-1	Pool awanna	<del></del> -	- (	6.9	1.07	1.2	1.60	2.3	0.09	3.8	0.10	1.4	0.16		4.4	0.61	1.3	0.31
MS-313	Fly Lake-1	Tirrawarra	<b></b> .	<del>.</del> !	5.7	1.05	1.4	1.36	1.1	3.4	0.00	2.5		0.44		3.6	1.0	0.46	0.13
M5-314	Moorari	Tirrawarra		,	4.B	1.02	1.4	1.39	1.8	1.6	0.00	1.3	1.3	0.28		4.5	0.89	0.67	0.16
MS-315	Yanpurra-1	Tirrawarra		<del>-</del> ,	6.9	0.98	1.5	1.73	1.3	3.1	0.00	2.3	<del>-</del> .	-	<u></u> :	5.5	0.73	0.84	0.19

^{*}See key (next page) for derivation and specificity of each parameter

#### KEY TO BIOMARKER PARAMETERS OF SOURCE, MATURITY, MIGRATION AND BIODEGRADATION

Parameter	* Derivation		Specificity
1	C ₂₇ : C ₂₀ : C ₂₉ 5α(H)14α(H)17α(H) 20R steranes		Source
2	$C_{29}$ 5 $\alpha(H)$ 14 $\alpha(H)$ 17 $\alpha(H)$ 20R sterane / $C_{27}$ 5 $\alpha(H)$ 14 $\alpha(H)$ 17 $\alpha(H)$ 20R sterane		Source
3	$C_{29}$ 13 $\beta$ (H)17 $\alpha$ (H) 20R diasterane / $C_{27}$ 13 $\beta$ (H)17 $\alpha$ (H) 20R diasterane		Source
× 4	$C_{29}$ 5 $\alpha$ (H)14 $\alpha$ (H)17 $\alpha$ (H) 20S sterane / $C_{29}$ 5 $\alpha$ (H)14 $\alpha$ (H)17 $\alpha$ (H) 20R sterane		Maturity, Biodegradation
5	$C_{27}$ 13 $\beta(H)$ 17 $\alpha(H)$ 20S diasterane / $C_{27}$ 13 $\beta(H)$ 17 $\alpha(H)$ 20R diasterane		Maturity
7 6	$C_{29}$ $5\alpha(H)14\beta(H)17\beta(H)$ 20R sterane / $C_{29}$ $5\alpha(H)14\alpha(H)17\alpha(H)$ 20R sterane		Maturity, Migration
7	$C_{29}$ 13 $\beta$ (H)17 $\alpha$ (H) 20 $R$ +20 $S$ diasteranes / $C_{29}$ 5 $\alpha$ (H) steranes		Migration, Source
8	C ₉₀ pentacyclic terpane/C ₉₀ 17α(H)21β(H) hopane		Source
9	$C_{27}$ $17\alpha(H)-22,29,30$ -trisnorhopane / $C_{27}$ $18\alpha(H)-22,29,30$ -trisnorhopane $(T_m/T_g)$		Maturity, Source
10	T _g / C ₃₀ 17α(H)2lβ(H) hopane		Maturity
11 .	C ₃₂ 17α(H)21β(H) 22S homohopane / C ₃₂ 17α(H)21β(H) 22R homohopane		Maturity
12	$C_{30}$ 178(H)21 $\alpha$ (H) moretane / $C_{30}$ 17 $\alpha$ (H)218(H) hopane		Maturity
13	C ₂₉ 17α(H)-25-norhopane / C ₂₉ 17α(H)-30-norhopane		Biodegradation
14	pristane / phytane		Source .
15	2,6,10-trimethyltridecane / pristane		Maturity
16	pristane / <u>n</u> -heptadecane	Source,	Biodegradation, Maturity
17	phytane / <u>n</u> -octadecane	Source,	Biodegradation, Maturity

^{*} Ratios calculated from peak areas as follows:

Parameters 1-6 m/z = 217 mass fragmentogram
Parameter 7 m/z = 217, 259 mass fragmentograms
Parameters 8-13 m/z = 191 mass fragmentogram
Parameters 14-17 capillary gas chromatogram of alkanes or whole oil/extract

TABLE 4: SUPPLEMENTARY SOURCE-DEPENDENT BIOMARKER RATIOS IN SIX OILS FROM THE PATCHAWARRA TROUGH

Well	Formation	C ₃₀ Hopane	C ₃₁ Me Hopane	C ₂₄ Tetracyclic	168H-Fhyll	ent-Bey:16pH-Phyll:ent-16pH-Kau
		C ₂₉ Steranes	C ₃₀ Hopane	C ₃₀ Hopane	·C ₃₀ Hopane	enc-bey: 10ph-rhy11:enc-10ph-kau
Bookabourdie-1	Birkhead		-	0.37	0.98	
Kenny-1	Birkhead	3.8	0.06	0.07	0.06	_
Moolion-1	Pool awanna	1.4	0.09	0.28	0.88	12:67:21
Fly Lake-1	Tirrawarra	0.10	_	2.0	3.9	26:56:18
Moorari-1	Tirrawarra	0.27	-	1.0	2.0	26:57:17
Yanpurra-1	Tirrawarra	0.11	<b></b>	1.4	4.2	23:57:20
*Parameter		18	19	20	21	22
*Measured from	mass fragm	entograms as	follows:	*	*	
Parameter	18 m/z	191, 217				
Parameter		191, 205				·
Parameter	20 m/z	191				
Parameter		123, 19.1				
Parameter	22 m/z	259				
,				•	. 1	

Show

profeson rede

TABLE 5: OIL MATURITY BASED ON AROMATIC HYDROCARBON DISTRIBUTIONS*, PATCHAWARRA TROUGH

					- 1			
AMDEL Sample	Well/Formation	MPI	MPR	DNŘ	(a)	VR _C al (b)	(c)	(d)
MS-316	Bookabourdie-1 (Birkhead)	0.60	0.50	3.49	0.76	1.94	0.64	N/A
MS-317	Kenny-1 (Birkhead)	0.23	0.18	2.21	0.54	2.16	0.20	N/A
MS-318	Moolion-1 (Poolawanna)	0.61	0.69	2.46	0.77	1.93	0.78	N/A
MS-319	Fly Lake-1 (Tirrawarra)	1.06	1.34	5.22	1.03	1.67	1.06	1.13
MS-320	Moorari-1 (Tirrawarra)	1.15	1.45	8.72	1.09	1.61	1.10	1.29
MS-321	Yanpurra-1 (Tirrawarra)	1.15	1.44	5.63	1.09	1.61	1.10	1.15

^{*}See key (next page) for derivation of listed parameters

N/A = not applicable

#### KEY TO AROMATIC MATURITY INDICATORS

Methylphenanthrene index (MPI), methylphenanthrene ratio (MPR), dimethylnaphthalene ratio (DNR) and calculated vitrinite reflectance  $(VR_{\rm calc})$  are derived from the following equations (after Radke and Welte, 1983; Radke et al., 1984):

$$\text{MPI} = \frac{1.5 \ (2-\text{MP} + 3-\text{MP})}{\text{P} + 1-\text{MP} + 9-\text{MP}}$$

$$\text{VR}_{\text{calc}} \ (a) = 0.6 \ \text{MPI} + 0.4 \ (\text{for VR} < 1.35\%)$$

$$\text{VR}_{\text{calc}} \ (b) = -0.6 \ \text{MPI} + 2.3 \ (\text{for VR} > 1.35\%)$$

$$\text{MPR} = \frac{\frac{2-\text{MP}}{1-\text{MP}}}{1-\text{MP}}$$

$$\text{VR}_{\text{calc}} \ (c) = 0.99 \ \log_{10} \ \text{MPR} + 0.94 \ (\text{for VR} = 0.5-1.7\%)$$

$$\text{DNR} = \frac{2,6-\text{DMN} + 2,7-\text{DMN}}{1,5-\text{DMN}}$$

$$\text{VR}_{\text{calc}} \ (d) = 0.046 \ \text{DNR} + 0.89 \ (\text{for VR} = 0.9-1.5\%)$$

$$\text{Where P} = \frac{1-\text{MP}}{2-\text{MP}} = \frac{1-\text{methylphenanthrene}}{2-\text{methylphenanthrene}}$$

$$\frac{3-\text{MP}}{3-\text{MP}} = \frac{3-\text{methylphenanthrene}}{3-\text{methylphenanthrene}}$$

$$\frac{1,5-\text{DMN}}{2,6-\text{DMN}} = \frac{2,6-\text{dimethylnaphthalene}}{2,7-\text{dimethylnaphthalene}}$$

Peak areas measured from m/z 155+156 (dimethylnaphthalene), m/z 178 (phenanthrene) and m/z 191+192 (methylphenanthrene) mass fragmentograms of diaromatic and triaromatic hydrocarbon fraction isolated by thin layer chromatography.

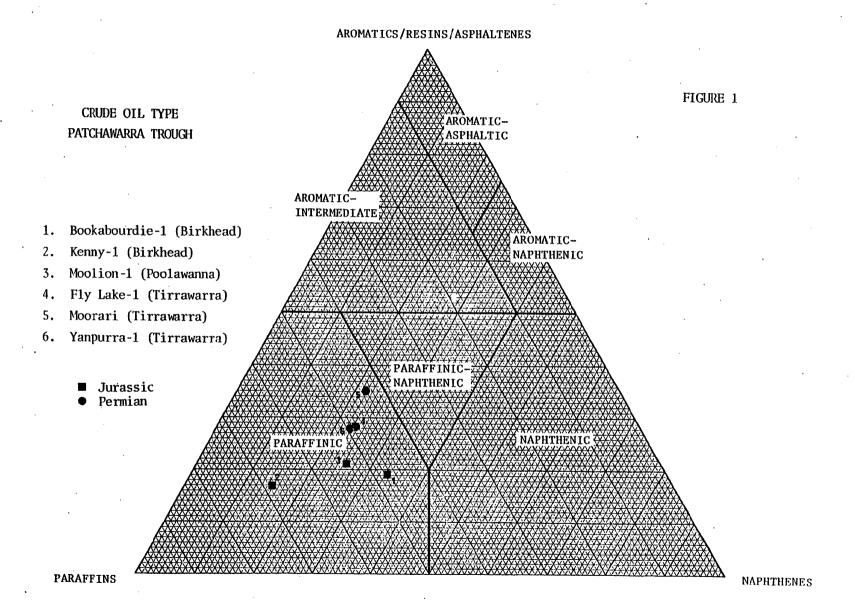
TABLE 6: SUPPLEMENTARY ARDMATIC MATURITY RATIOS IN SIX DILS FROM THE PATCHAWARRA TROUGH

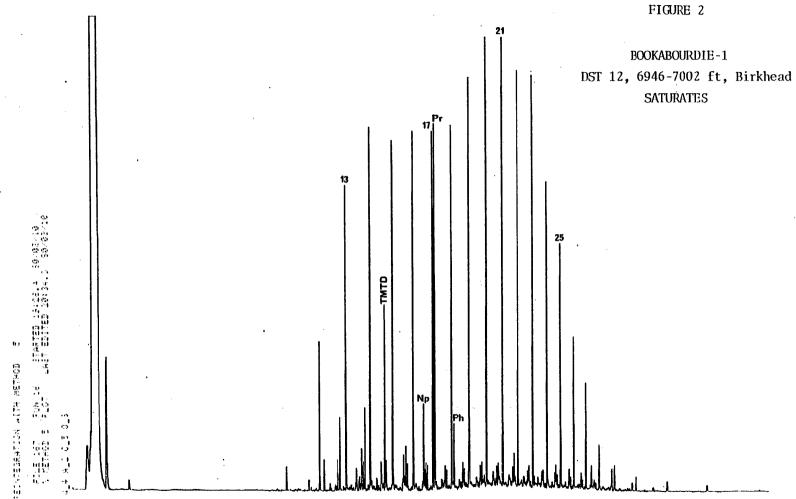
Well/Formation	DNR-5	DNR-6	TNR-1	MPR-2
Bookabourdie-1 (Birkhead)	196	4.87	0.54	0.91
Kenny-1 (Birkhead)	97.3	3.30	0.44	0.33
Moolion-1 (Poolawanna)	196	-	_	1.28
Fly Lake-1 (Tirrawarra)	*	6.28	1.07	2.60
Moorari-1 (Tirrawarra)	*	7.73	1.18	2.73
Yanpurra-1 (Tirrawarra)	*	6.60	0.90	2.71

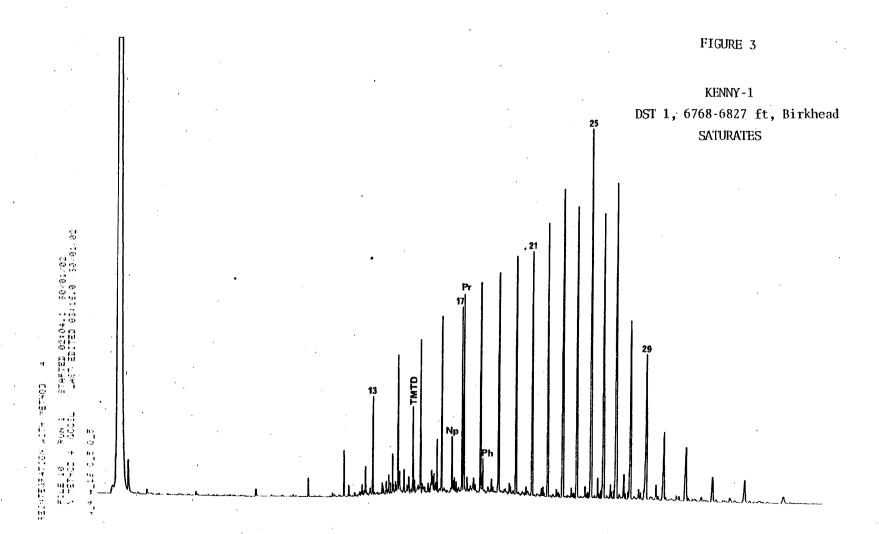
DNR-5	=	1,6-DMN
		1,8-DMN
DNR 6	=	2,6-DMN + 2,7-DMN
		1,4-DMN + 2,3-DMN
TNR-1	=	2,3,6-TMN
		1,4,6-TMN + 1,3,5-TMN
MPR-2	÷	2-MP + 3-MP
		1-MP

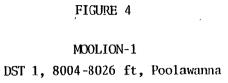
*1,8-DMN not detected

COMPARISON OF OIL AND RESERVOIR MATURITY DATA, PATCHAWARRA TROUGH


Well/Formation	Oil	Reservoir	$VR_{oil}-VR_{res}$
	VR _{calc} ¹	VR _{meas} 2	
Bookabourdie-1 (Birkhead)	0.76	0.70 ³	0.06
Kenny-1 (Birkhead)	0.54	0.62	-0.08
Moolion-1 (Poolawanna)	0.77	0.67	-0.10
Fly Lake-1 (Tirrawarra)	1.03	0.98	0.05
Moorari-1 (Tirrawarra)	1.09	0.95	0.14
Yanpurra-1 (Tirrawarra)	1.09	1.304	-0.21


^{1.} Preferred value from Table 5.


^{2.} VR at middle of reservoir formation; read from depth-reflectance profile of each well


^{3.} Top Birkhead; estimated from regional reflectance map

^{4.} Estimate by J. Hunt









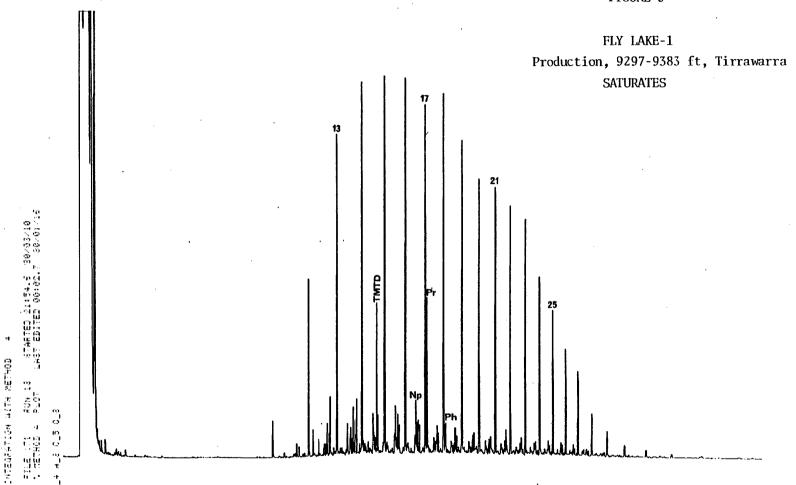
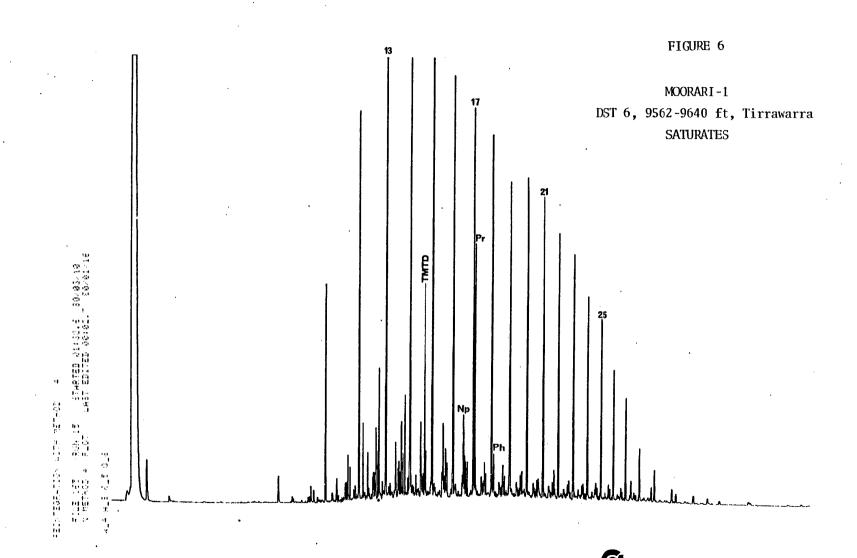
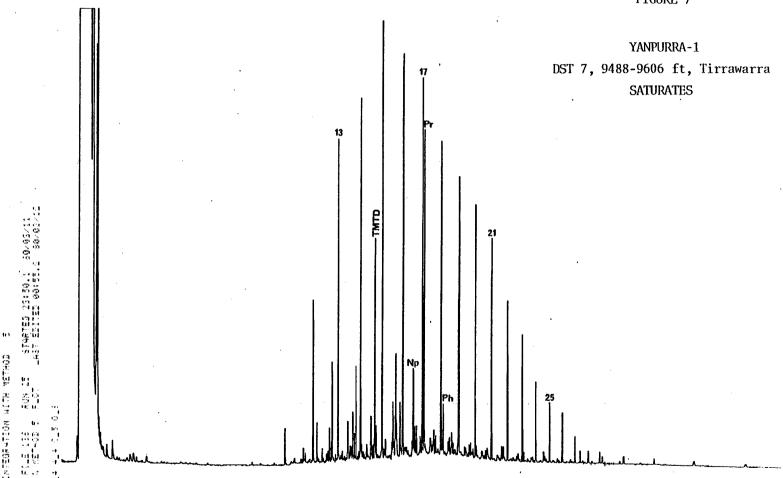






FIGURE 5









### FIGURES 8-10

# MASS FRAGMENTOGRAMS OF NAPHTHENES IN JURASSIC AND PERMIAN OILS, PATCHAWARRA TROUGH

Fig. 8 : m/z 123, 259 tetracyclic diterpanes

Fig. 9 : m/z 183 acyclic isoprenoid alkanes

m/z 191 triterpanes (incl. hopanes, moretanes)

Fig. 10: m/z 217, 218 steranes

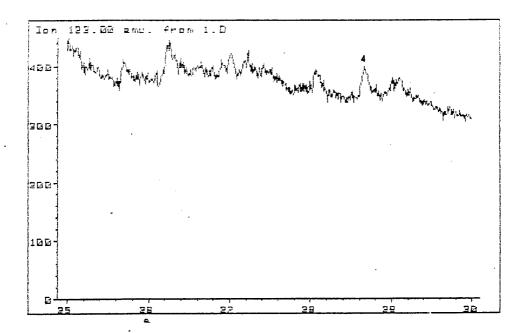
- A. Bookabourdie-1 (Birkhead)
- B. Kenny-1 (Birkhead)
- C. Moolion-1 (Poolawanna)
- D. Fly Lake-1 (Tirrawarra)
- E. Moorari-1 (Tirrawarra)
- F. Yanpurra-1 (Tirrawarra)

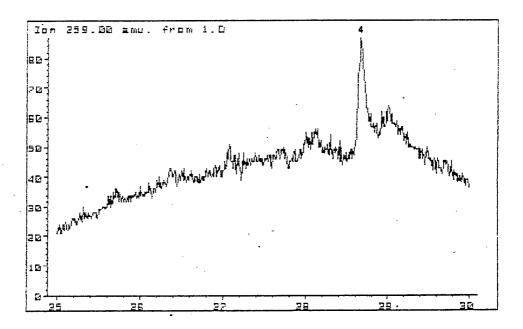
# KEY TO MASS FRAGMENTOGRAMS

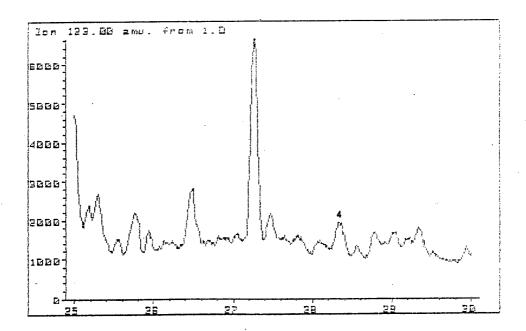
# m/z 123, 259 (diterpanes)

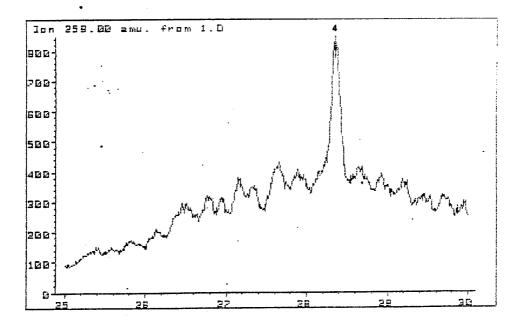
1	Cio	isopimarane
2	C20	<u>ent</u> -beyerane
3	C20	isopimarane
4	C20	16ß(H)-phyllocladane
5	C ₂₀	<u>ent</u> -16ß(H)-kaurane
6	C20	16α(H)-phyllocladane
7	Cau	ent-16α(H)-kaurane

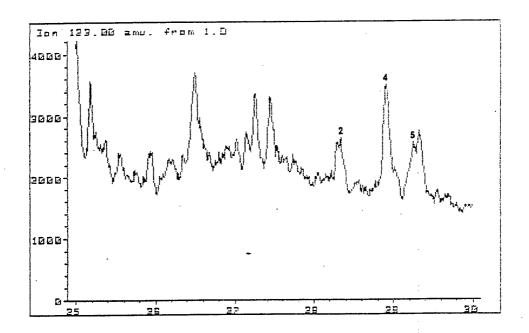
# m/z 183 (acyclic isoprenoid alkanes)

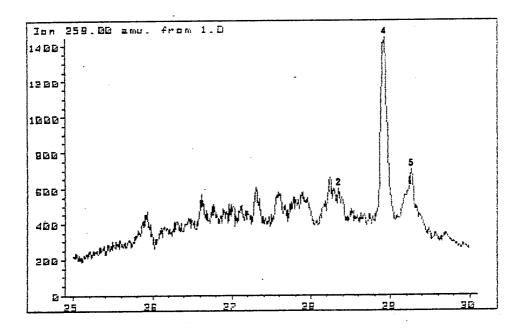

15-40 numbers indicate number of carbon atoms in compound * irregular (head-to-head)

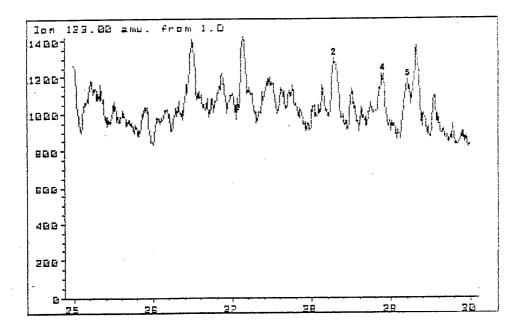

## m/z 191 (terpanes)

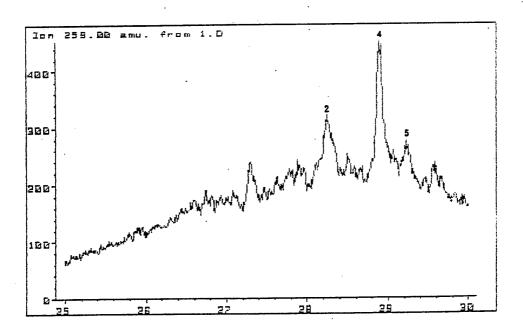

1-6 7	C ₂₀ -C ₂₅ C ₂₄	tricyclic terpanes tetracyclic terpane
8	C26	tricyclic terpane
9	C ₂₇	18x(H)-22,29,30-trisnorhopane (Ts)
10	C27	17α(H)-22,29,30-trisnorhopane (Tm)
11	C28	17α(H)-28,30-bisnorhopane
12	C29	17α(H)-25-norhopane
13	C _{2 9}	17α(H)21β(H) norhopane
14	C30	pentacyclic terpane
15	C29	17β(H)21α(H) moretane
16	Cso	17α(H)21β(H) hopane
17	C30	17β(H)21α(H) moretane
18-22	C3i-C35	17α(H)21β(H) 22S (left) and 22R (right)

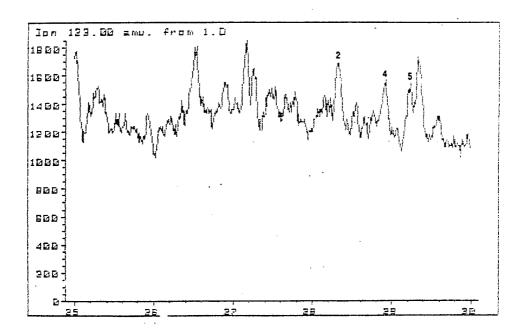

# m/z 217, 218, 259 (steranes, diasteranes)

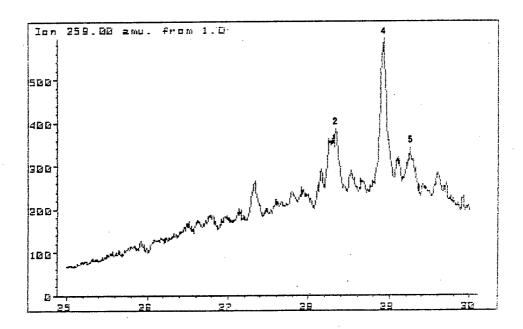

1	C2i	sterane
2	Czz	sterane
3&4	C ₂₇	205 and 20R diasteranes
5&8	C ₂₇	$5\alpha(H)14\alpha(H)17\alpha(H)$ 20S and 20R steranes
6	C27	5α(H)14β(H)17β(H) 20R sterane
7	C ₂₇	$5\alpha(H) 14\beta(H) 17\beta(H)$ 20S sterane + C ₂₉ 20S
		di asterane
9	C29	20R diasterane
10&13	C ₂₈	$5\alpha(H)14\alpha(H)17\alpha(H)$ 20S and 20R steranes
11&12	C28	5α(H)14β(H)17β(H) 20R and 20S steranes
14&1.7	C ₂ 9	$5\alpha(H)14\alpha(H)17\alpha(H)$ 20S and 20R steranes
15&16	C20	5α(H)14β(H)17β(H) 20R and 20S steranes

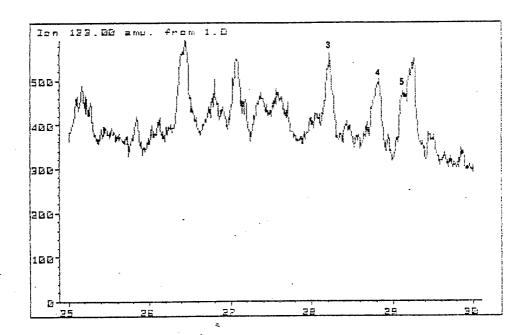


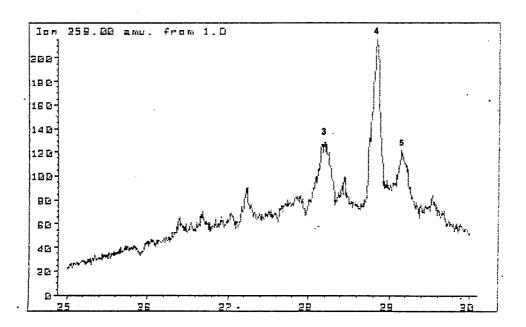



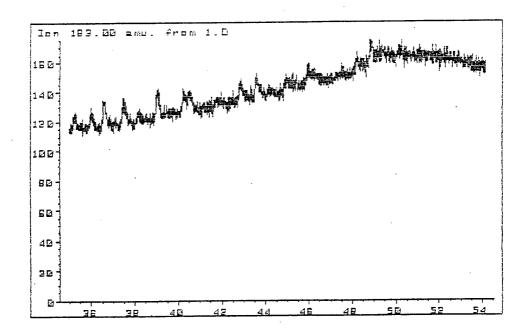



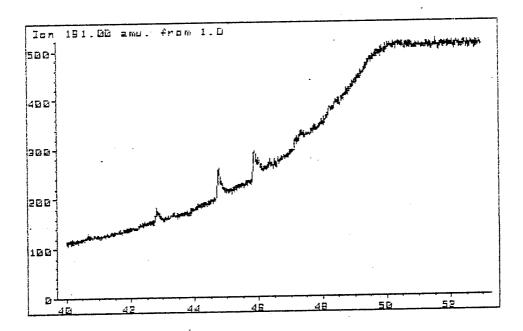



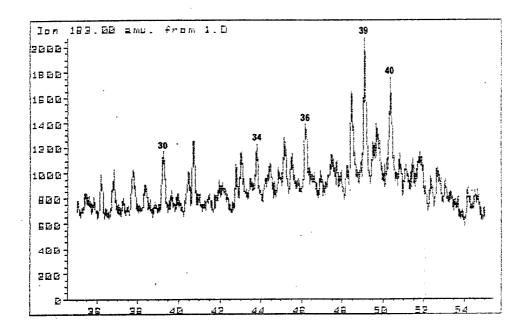



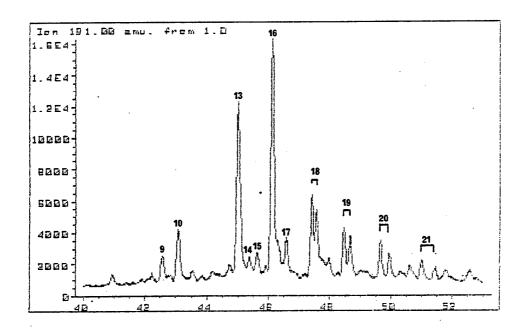



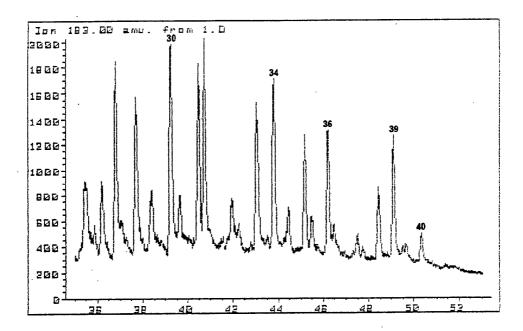



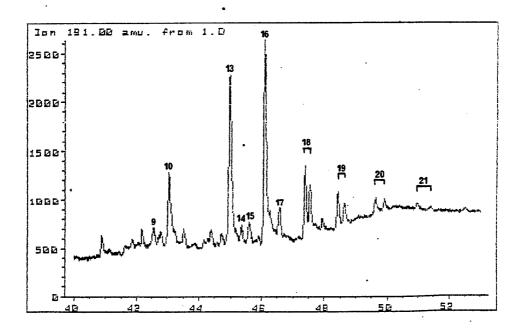



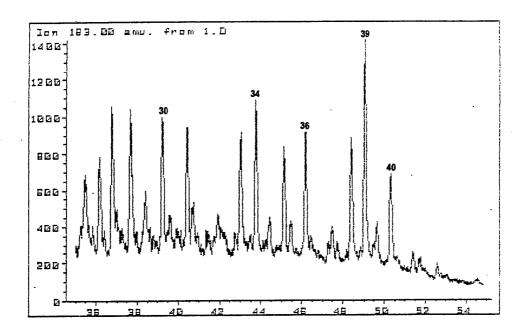



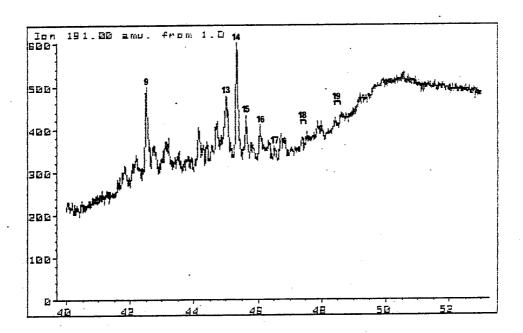



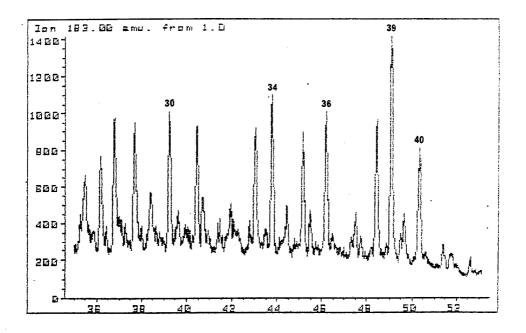



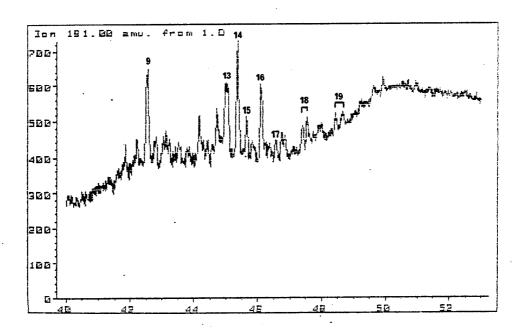



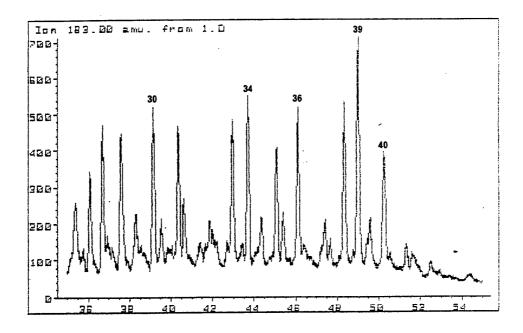



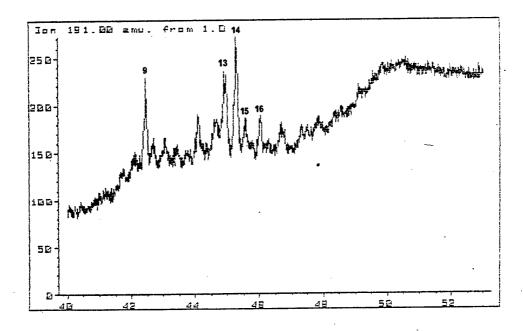



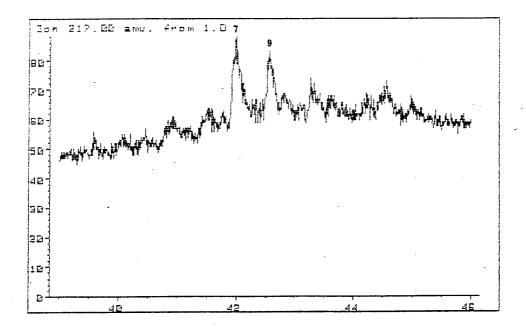



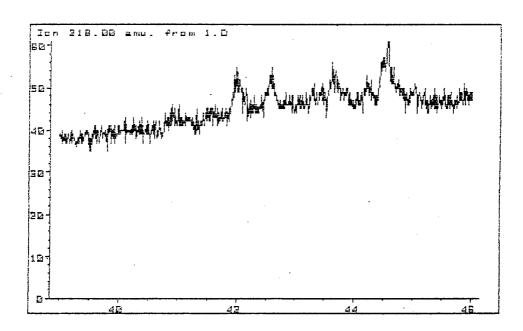



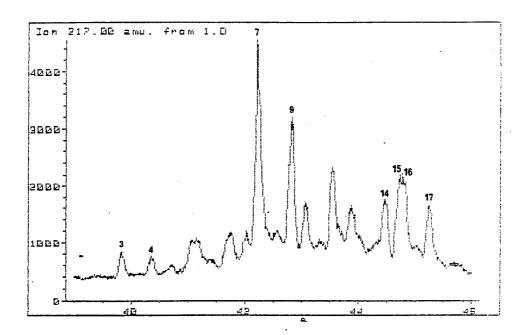



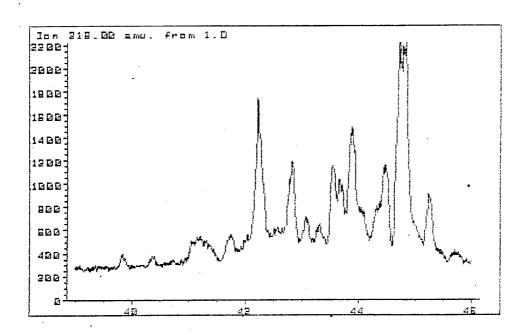



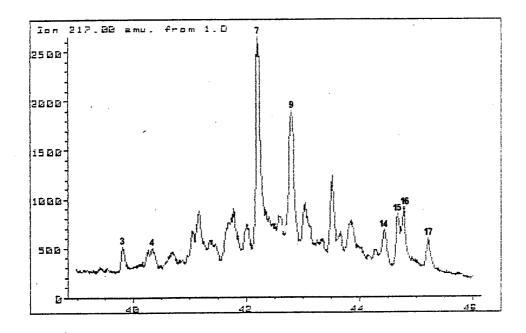



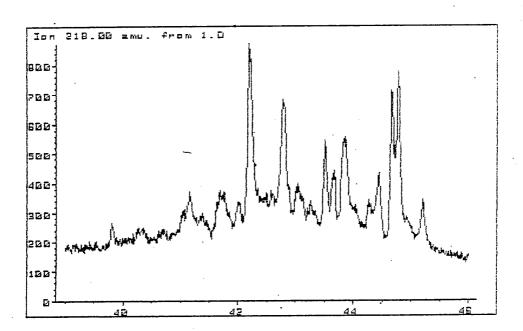



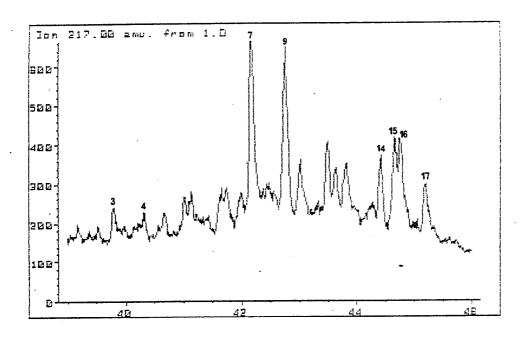



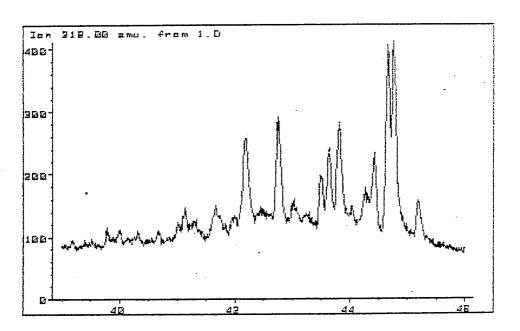



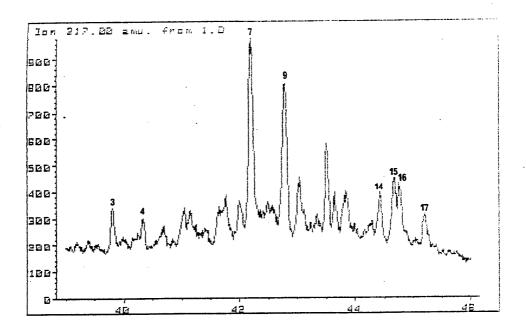



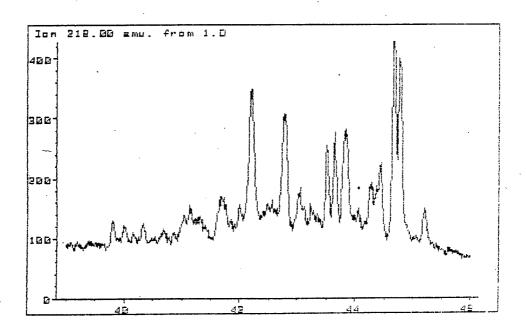



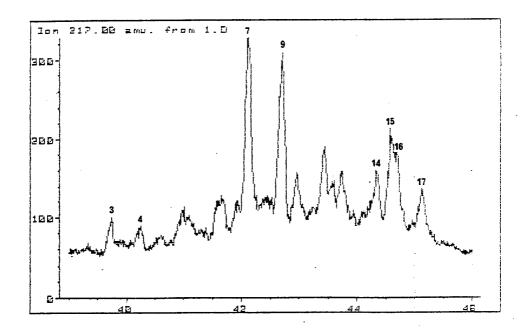



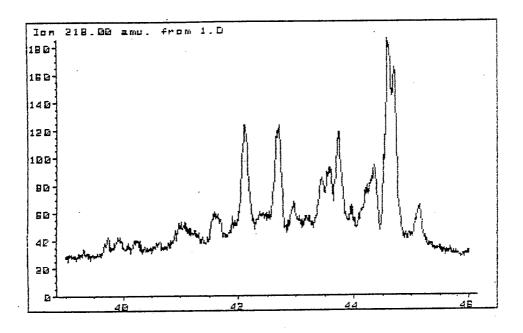



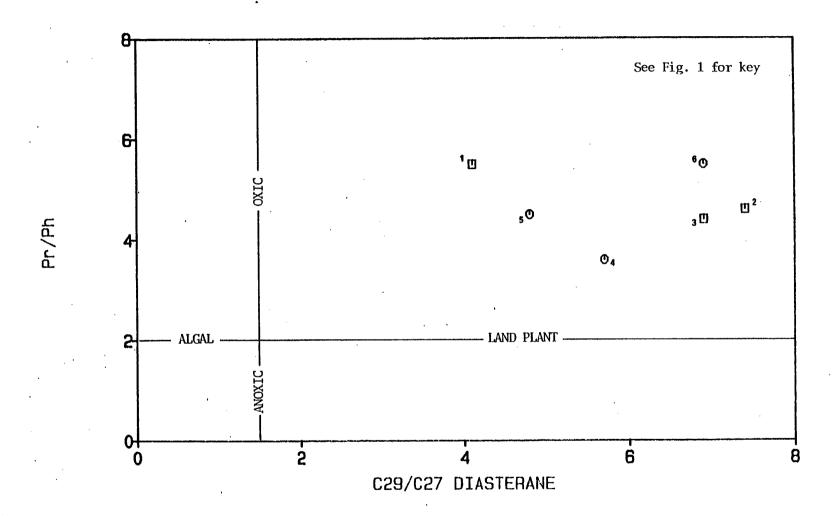



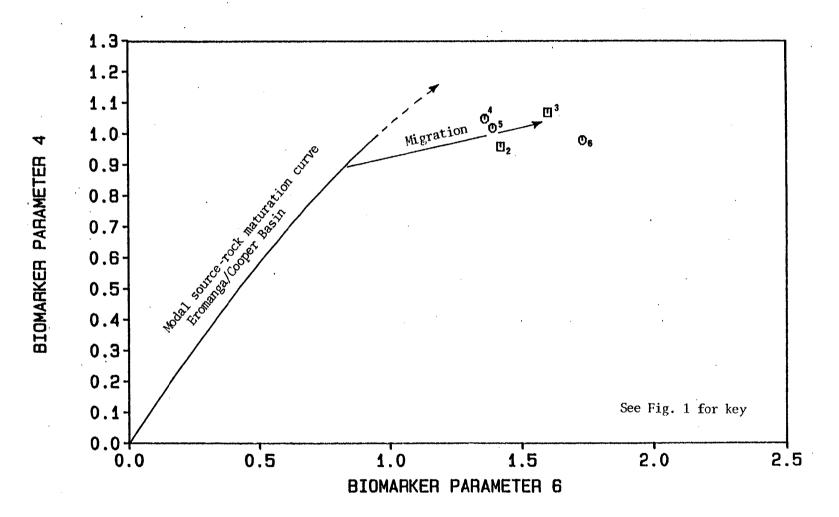











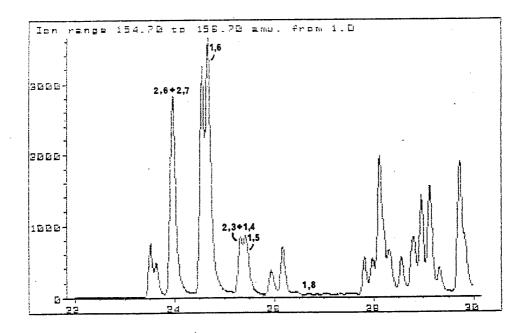


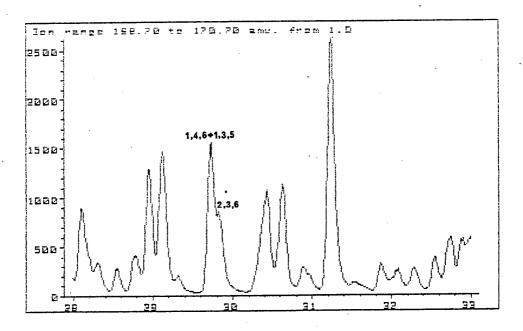

# C29 STERANE MATURITY - MIGRATION PLOT PATCHAWARRA TROUGH OILS

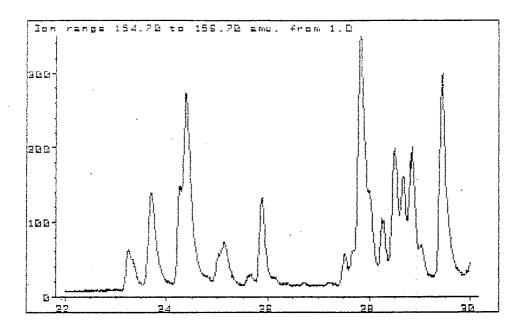


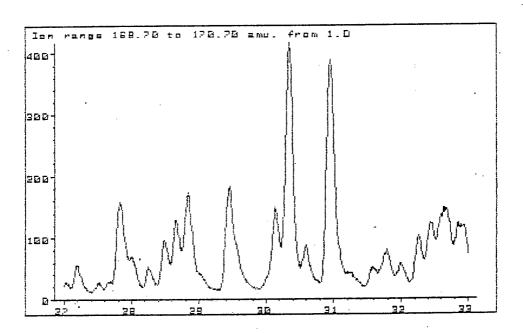
### FIGURES 13, 14

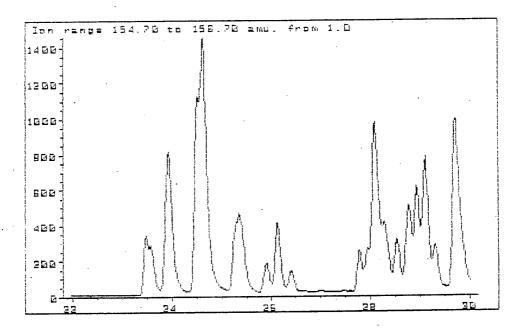
# MASS FRAGMENTOGRAMS OF AROMATIC HYDROCARBONS IN JURASSIC AND PERMIAN DILS, PATCHAWARRA TROUGH


Fig. 13 : m/z 155+156 dimethylnaphthalenes

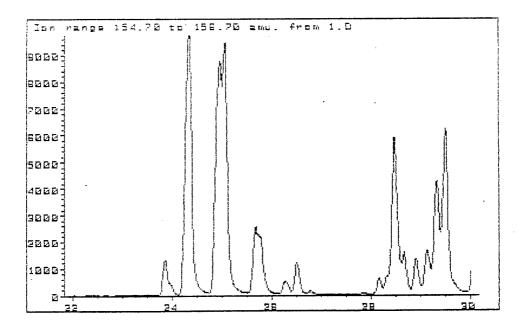

m/z 169+170 trimethylnaphthalenes

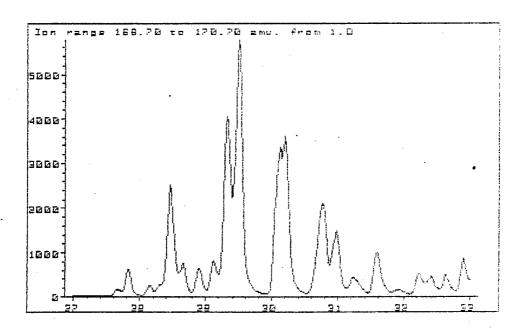

Fig. 14 : m/z 178 phenanthrene

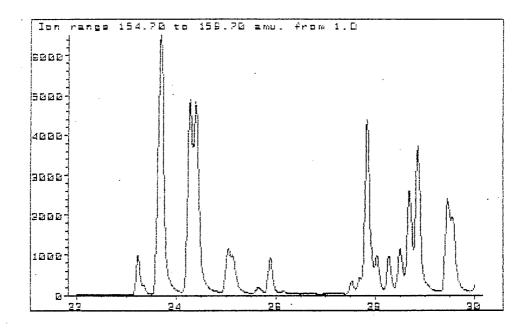

m/z 191+192 methylphenanthrenes

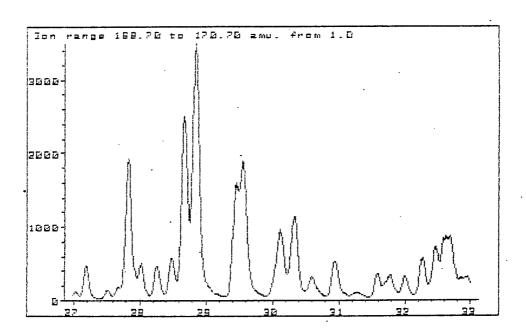

- A. Bookabourdie-1 (Birkhead)
- B. Kenny-1 (Birkhead)
- C. Moolion-1 (Poolawanna)
- D. Fly Lake-1 (Tirrawarra)
- E. Moorari-1 (Tirrawarra)
- F. Yanpurra-1 (Tirrawarra)

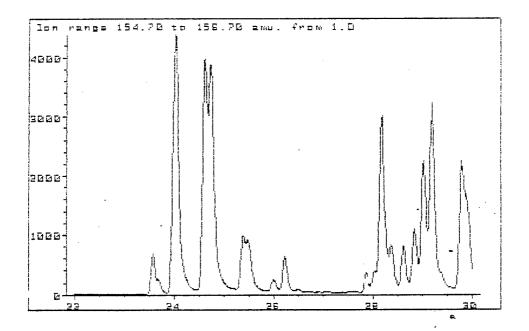


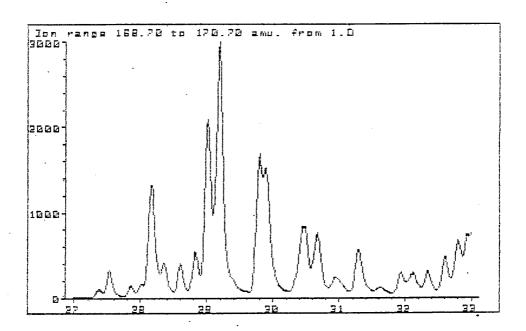



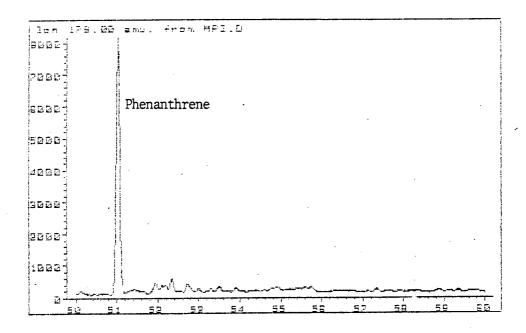



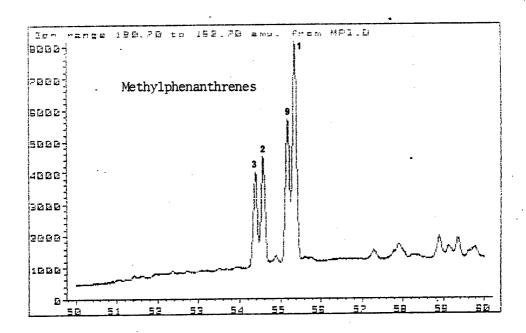



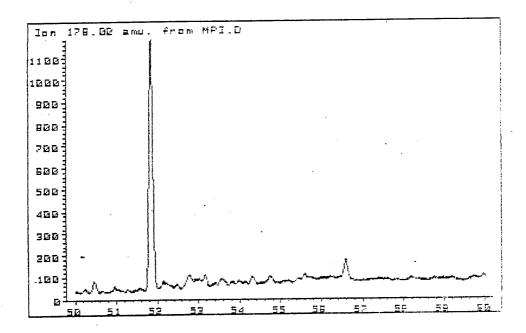



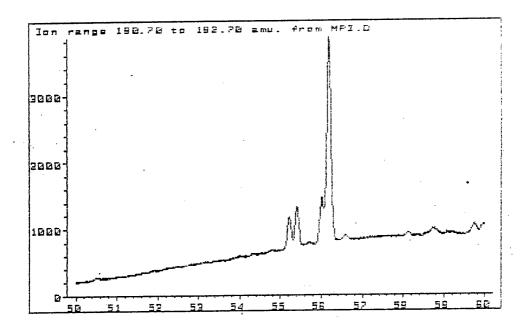



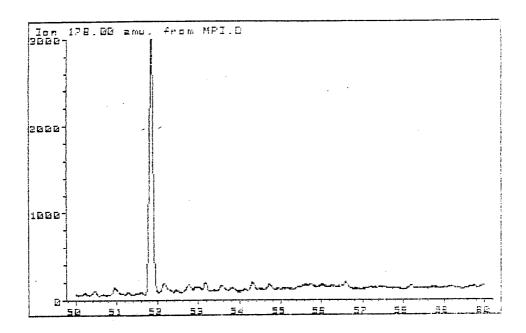



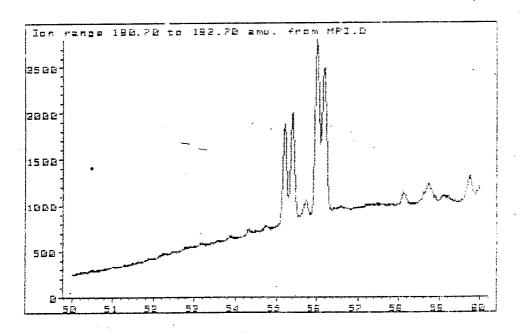



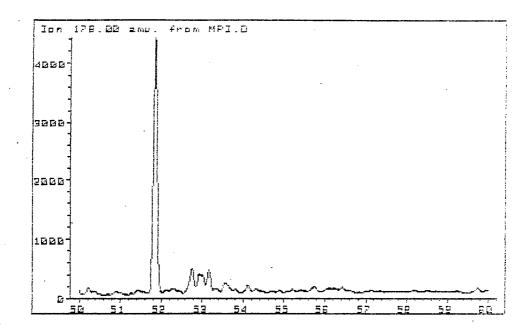



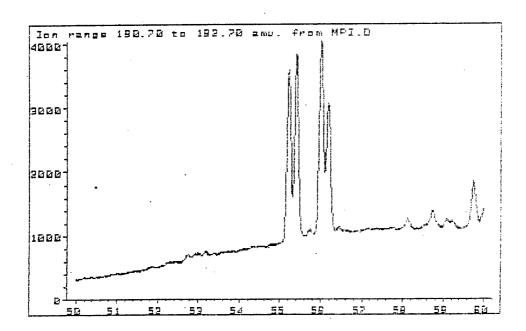



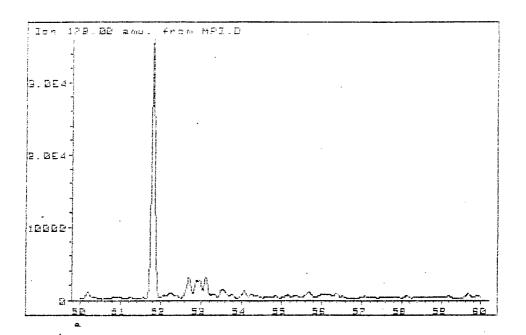



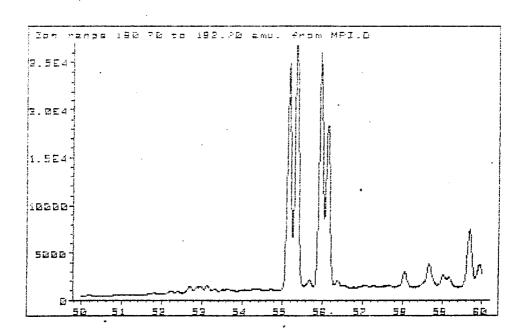



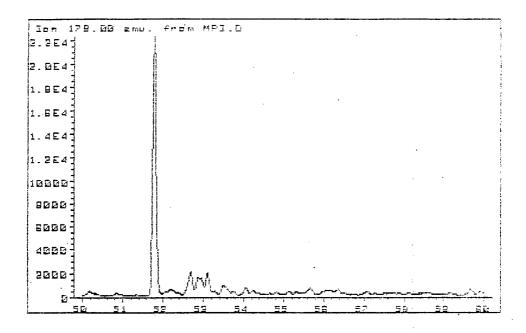



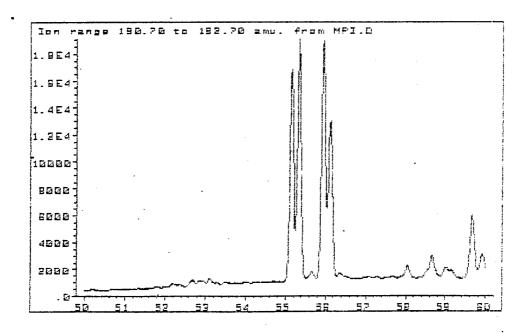














# APPENDIX 1

ANALYTICAL METHODS

## 1. ISOLATION OF C12+ FRACTION

The oils were topped to 210°C by distillation.

#### 2. LIQUID CHROMATOGRAPHY

Asphaltenes were precipitated from the topped oils by refluxing with petroleum ether prior to liquid chromatography. The asphaltene-free fraction was separated into hydrocarbons (saturates and aromatics) and polar compounds (resins) by liquid chromatography on activated alumina (sample: adsorbent ratio = 1:100). Hydrocarbons were eluted ether/dichloromethane (50:50)and resins petroleum (65:35). and The saturated aromatic methanol/dichloromethane hydrocarbons were then separated by liquid chromatography on activated silica gel (sample: adsorbent ratio = 1:100) eluting in turn with petroleum ether and petroleum ether/dichloromethane (91:9).

#### 3. GAS CHROMATOGRAPHY

The saturated hydrocarbons (alkanes) were examined by gas chromatography using the following instrumental parameters:

Gas chromatograph: Perkin Elmer Sigma 2 fitted with on-

column injector

Column: 25 m x 0.3 mm fused silica, SGE QC3/

BP1

Detector temperature: 300°C

Column temperature: 100-290°C at 5° per minute and held at

290°C until all peaks eluted

Quantification: Relative concentrations of individual

normal and isoprenoid alkanes were obtained by measurement of peak areas with a Perkin Elmer LCI 100 integrator

#### 4. THIN LAYER CHROMATOGRAPHY (TLC)

Aromatic hydrocarbons were isolated from the topped oils by preparative TLC using Merck  $6F_{254}$  silica plates and distilled AR grade n-pentane as eluent. Naphthalene and anthracene were employed as reference standards for the diaromatic and triaromatic hydrocarbons, respectively. These two bands, visualised under UV light, were scraped from the plate and the aromatic hydrocarbons redissolved in dichloromethane.

#### 5. GAS CHROMATOGRAPHY-MASS SPECTROMETRY (GC-MS)

Naphthenes (branched/cyclic alkanes) were isolated from the oils by urea adduction of their saturated hydrocarbons.

GC-MS analysis of the naphthenes (urea non-adduct) was undertaken in the selected ion detection (SID) mode. The instrument and its operating parameters were as follows:

System:	Hewlet	t Packar	d (HP)	) 5790 GC	conbied
	with a	HP5970A	mass	selectiv	e detector

and HP9816S data system

Column: 25 m x 0.34 mm i.d. HP Ultra

Performance cross-linked methyl-

silicone phase fused silica, interfaced directly to source of mass spectrometer

Injector: Carlo Erba on-column injector

Carrier gas: He at 0.2 kg/cm² head pressure

Column temperature: 35-280°C at 5°/min

Mass spectrometer

conditions: 70 eV; 9-ion selected ion monitoring,

50 millisec dwell time for each ion

The following mass fragmentograms were recorded:

m/z	Compound Type
•	
123	sesquiterpanes (incl. drimanes),
	diterpanes
177	demethylated triterpanes
183	acyclic alkanes (incl. isoprenoids)
191	triterpanes (incl. hopanes, moretanes)
205	methyl triterpanes
217	steranes
218	steranes
231	4-methyl steranes
259	diasteranes, diterpanes

Integration of the m/z 191 and 217 mass fragmentograms allowed calculation of the biomarker ratios in Tables 3 and 4.

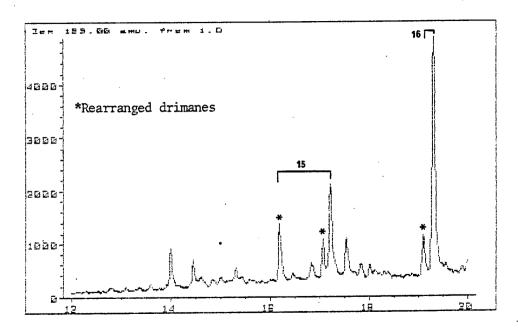
The di- and triaromatic hydrocarbons isolated from the deasphaltened oil by thin layer chromatography were also analysed by GC-MS.

Instrumental conditions employed for the SID GC-MS of the aromatics are described above, except that a HP Ultra 2 cross-linked phenylmethylsilicone phase fused column was used.

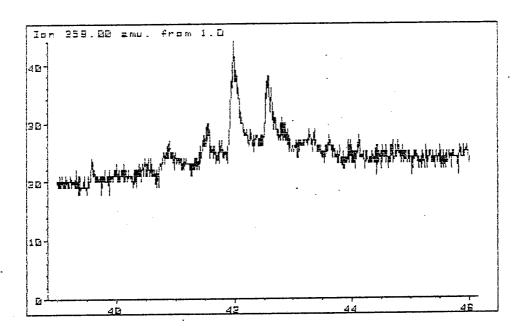
The following mass fragmentograms were recorded:

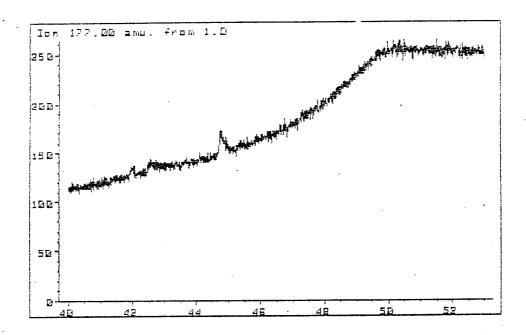
Compound Type		
dimethylnaphthalenes		
trimethylnaphthalenes		
phenanthrene		
methylphenanthrenes		

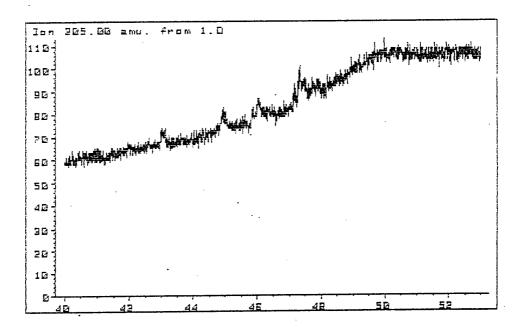
The area of the phenanthrene peak was multiplied by a response factor of 0.667 when calculating the methylphenanthrene index (MPI).


## APPENDIX 2

# OTHER MASS FRAGMENTOGRAMS OF NAPHTHENES IN JURASSIC AND PERMIAN OILS, PATCHAWARRA TROUGH

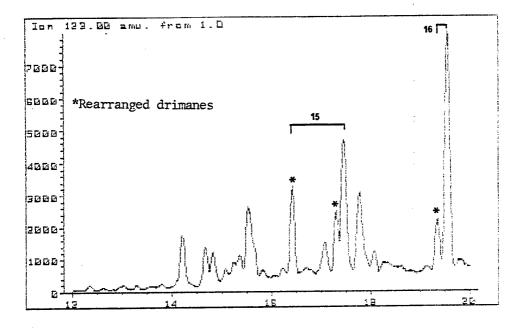

m/z	123	orimanes
m/z	177	hopanes, demethylated hopanes
m/z	205	methylhopanes
m/z	231	4-methylsteranes
m/z	259	diasteranes

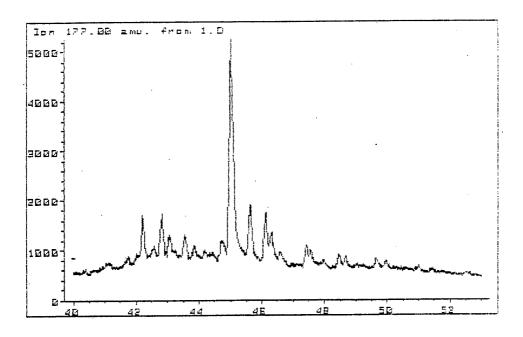

BOOKABOURDIE-1 (Birkhead)

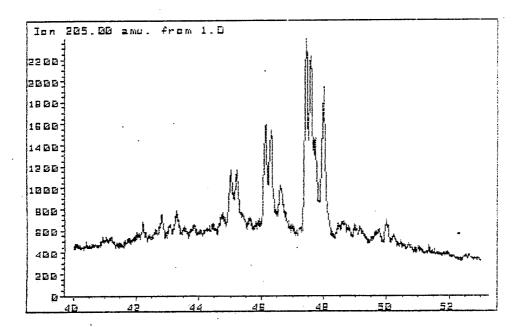

AMDEL Sample MS-310

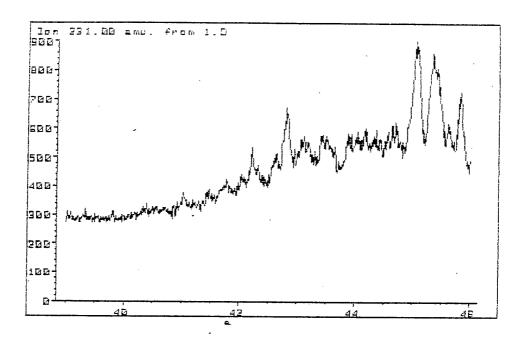


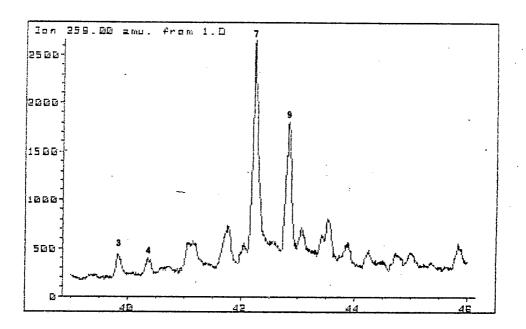




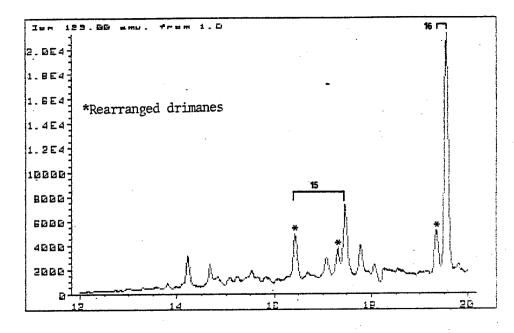



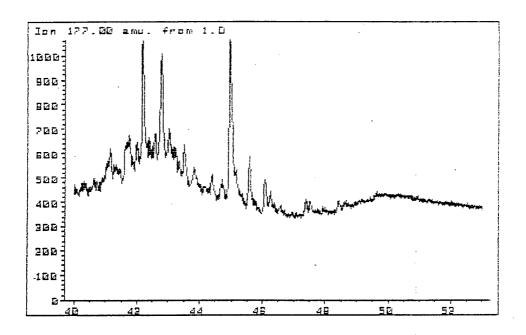


KENNY-1 (Birkhead)

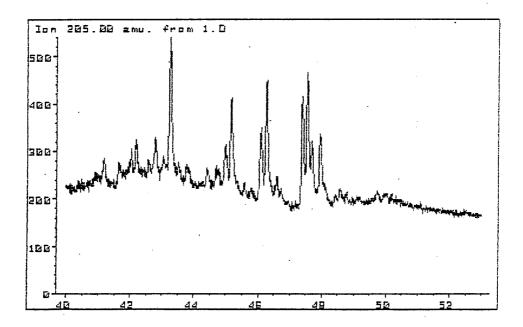

AMDEL Sample MS-311

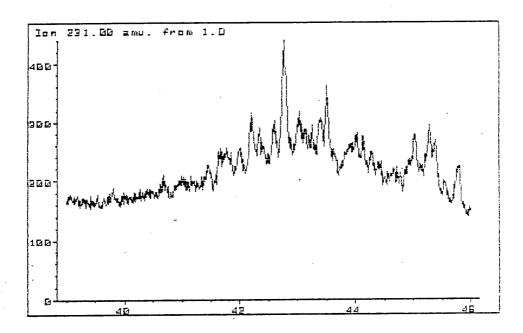


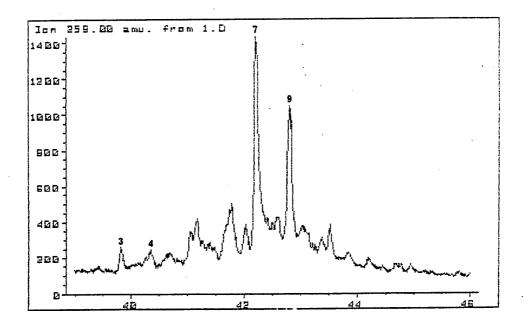




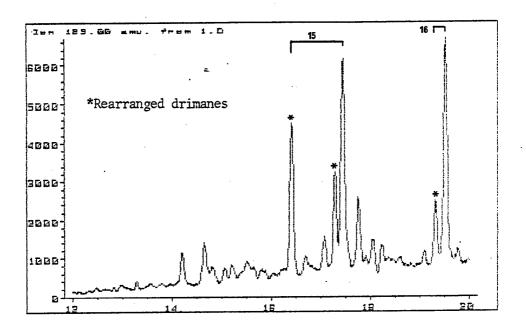



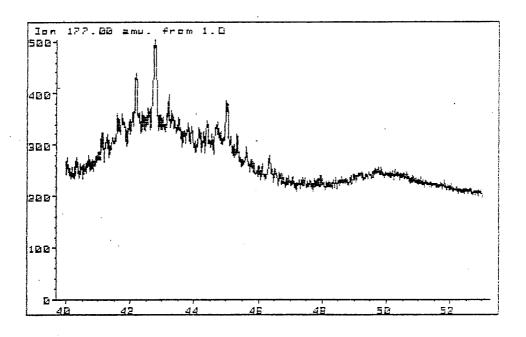


MODLION-1 (Poolawanna)

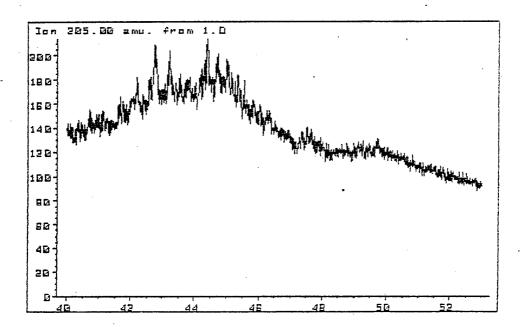

AMDEL Sample MS-312

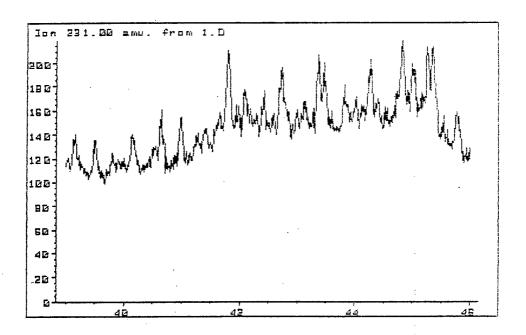


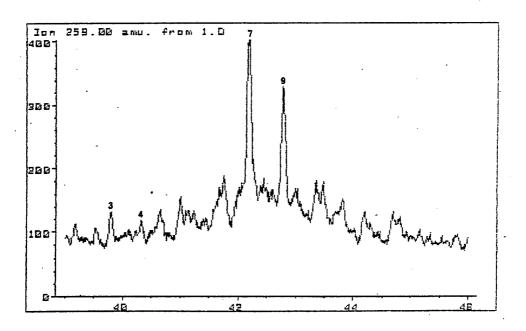




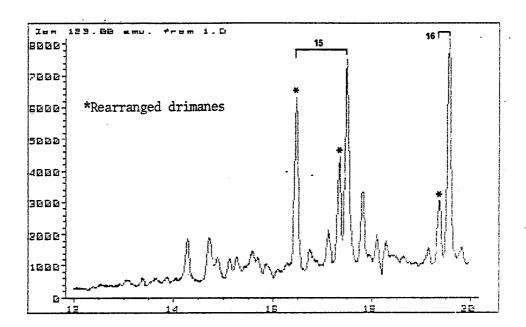



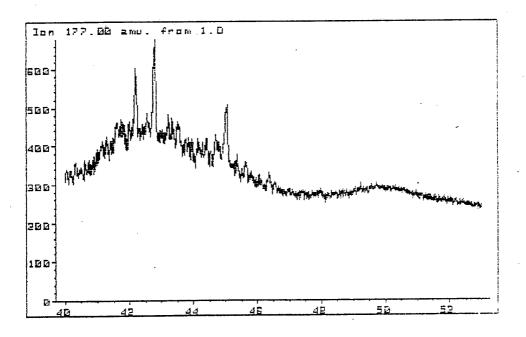


FLY LAKE-1 (Tirrawarra)

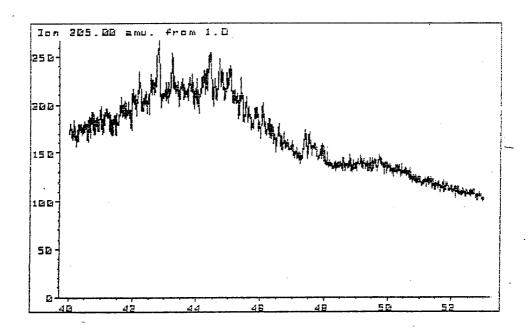

AMDEL Sample MS-313

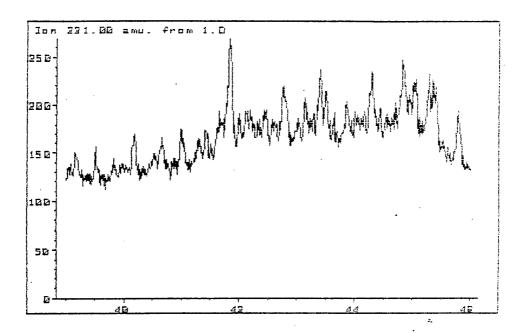


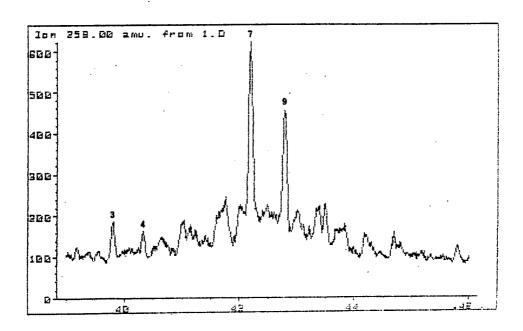




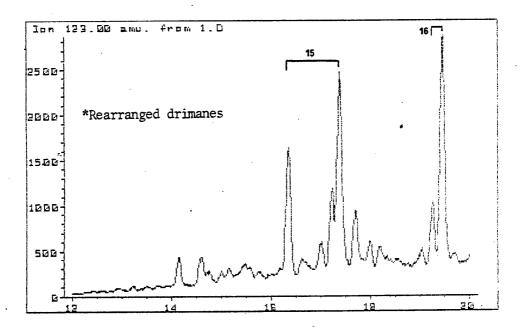



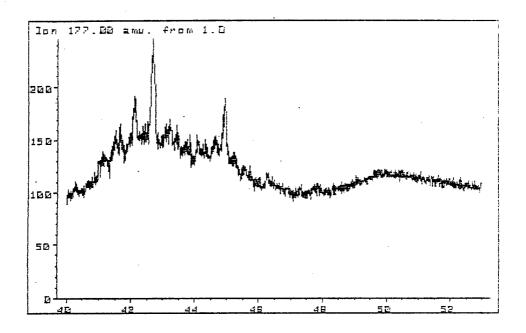



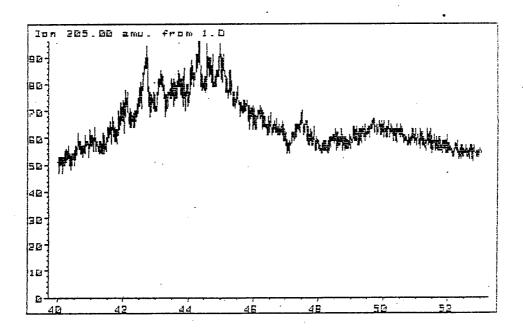


MODRARI-1 (Tirrawarra)

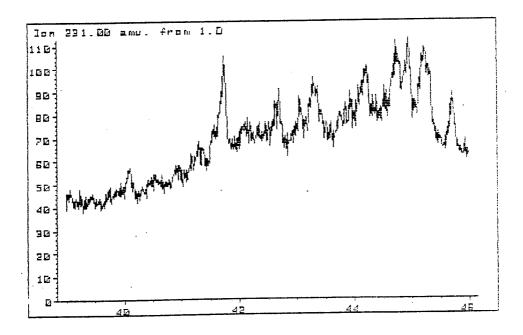

AMDEL Sample MS-314

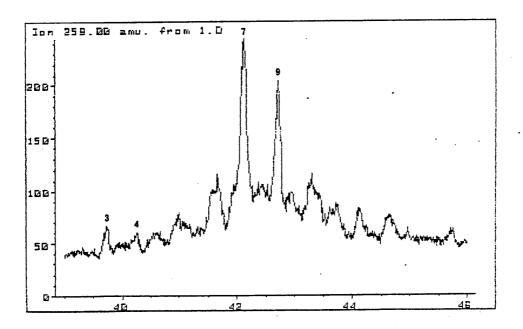






YANPURRA-1 (Tirrawarra)
AMDEL Sample MS-315









